基于径向基函数网络的可控源电磁法海底测井正演模拟

Agus Arif, V. Asirvadam, M. N. Karsiti
{"title":"基于径向基函数网络的可控源电磁法海底测井正演模拟","authors":"Agus Arif, V. Asirvadam, M. N. Karsiti","doi":"10.1109/NATPC.2011.6136385","DOIUrl":null,"url":null,"abstract":"Forward modeling is an important step in processing data of seabed logging (SBL) with controlled source electromagnetic (CSEM) method to determine the location and dimension of a hydrocarbon layer under the seafloor. In this research, forward modeling was conducted using a radial basis function (RBF) network, which is an important type of artificial neural networks. To train this RBF network, a data set was generated using a simulation software: COMSOL Multiphysics. The network designed has 3 layers with 3 neurons in the input layer and 1 neuron in the output layer. The single hidden layer contained neurons whose number had been varied between 1 and 20 neurons. The performance comparison showed that the RBF network with 10 neurons in its hidden layer was the best to model SBL with CSEM method.","PeriodicalId":6411,"journal":{"name":"2011 National Postgraduate Conference","volume":"30 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forward modeling of seabed logging with controlled source electromagnetic method using radial basis function networks\",\"authors\":\"Agus Arif, V. Asirvadam, M. N. Karsiti\",\"doi\":\"10.1109/NATPC.2011.6136385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forward modeling is an important step in processing data of seabed logging (SBL) with controlled source electromagnetic (CSEM) method to determine the location and dimension of a hydrocarbon layer under the seafloor. In this research, forward modeling was conducted using a radial basis function (RBF) network, which is an important type of artificial neural networks. To train this RBF network, a data set was generated using a simulation software: COMSOL Multiphysics. The network designed has 3 layers with 3 neurons in the input layer and 1 neuron in the output layer. The single hidden layer contained neurons whose number had been varied between 1 and 20 neurons. The performance comparison showed that the RBF network with 10 neurons in its hidden layer was the best to model SBL with CSEM method.\",\"PeriodicalId\":6411,\"journal\":{\"name\":\"2011 National Postgraduate Conference\",\"volume\":\"30 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 National Postgraduate Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NATPC.2011.6136385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 National Postgraduate Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NATPC.2011.6136385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

正演模拟是利用可控源电磁法对海底测井资料进行处理,确定海底油气层的位置和尺寸的重要步骤。本研究采用径向基函数(RBF)网络进行正演建模,RBF网络是一种重要的人工神经网络。为了训练该RBF网络,使用COMSOL Multiphysics仿真软件生成数据集。设计的网络有3层,输入层有3个神经元,输出层有1个神经元。单个隐藏层包含的神经元数量在1到20个之间变化。性能比较表明,隐藏层包含10个神经元的RBF网络最适合用CSEM方法建模SBL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forward modeling of seabed logging with controlled source electromagnetic method using radial basis function networks
Forward modeling is an important step in processing data of seabed logging (SBL) with controlled source electromagnetic (CSEM) method to determine the location and dimension of a hydrocarbon layer under the seafloor. In this research, forward modeling was conducted using a radial basis function (RBF) network, which is an important type of artificial neural networks. To train this RBF network, a data set was generated using a simulation software: COMSOL Multiphysics. The network designed has 3 layers with 3 neurons in the input layer and 1 neuron in the output layer. The single hidden layer contained neurons whose number had been varied between 1 and 20 neurons. The performance comparison showed that the RBF network with 10 neurons in its hidden layer was the best to model SBL with CSEM method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabrication of circular and Profiled Conformal Cooling Channels in aluminum filled epoxy injection mould tools Preliminary risk assessment for the bench-scale of biomass gasification system A flexible Polyimide based SAW delay line for corrosion detection Evaluation of mental stress using physiological signals Optimization approach for kinetics parameters determination for oil palm waste steam gasification with in-situ CO2 capture for hydrogen production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1