纽约市人类流动性和Covid-19早期动态的隔室模型

Ian Frankenburg, Sudipto Banerjee
{"title":"纽约市人类流动性和Covid-19早期动态的隔室模型","authors":"Ian Frankenburg, Sudipto Banerjee","doi":"10.51387/21-NEJSDS2","DOIUrl":null,"url":null,"abstract":"In this paper, we build a mechanistic system to understand the relation between a reduction in human mobility and Covid-19 spread dynamics within New York City. To this end, we propose a multivariate compartmental model that jointly models smartphone mobility data and case counts during the first 90 days of the epidemic. Parameter calibration is achieved through the formulation of a general Bayesian hierarchical model to provide uncertainty quantification of resulting estimates. The open-source probabilistic programming language Stan is used for the requisite computation. Through sensitivity analysis and out-of-sample forecasting, we find our simple and interpretable model provides evidence that reductions in human mobility altered case dynamics.","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Compartment Model of Human Mobility and Early Covid-19 Dynamics in NYC\",\"authors\":\"Ian Frankenburg, Sudipto Banerjee\",\"doi\":\"10.51387/21-NEJSDS2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we build a mechanistic system to understand the relation between a reduction in human mobility and Covid-19 spread dynamics within New York City. To this end, we propose a multivariate compartmental model that jointly models smartphone mobility data and case counts during the first 90 days of the epidemic. Parameter calibration is achieved through the formulation of a general Bayesian hierarchical model to provide uncertainty quantification of resulting estimates. The open-source probabilistic programming language Stan is used for the requisite computation. Through sensitivity analysis and out-of-sample forecasting, we find our simple and interpretable model provides evidence that reductions in human mobility altered case dynamics.\",\"PeriodicalId\":94360,\"journal\":{\"name\":\"The New England Journal of Statistics in Data Science\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The New England Journal of Statistics in Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51387/21-NEJSDS2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51387/21-NEJSDS2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们建立了一个机制系统来理解纽约市人员流动减少与Covid-19传播动态之间的关系。为此,我们提出了一个多变量分区模型,该模型联合模拟了疫情前90天的智能手机移动数据和病例数。参数校准是通过制定一般贝叶斯层次模型来实现的,以提供结果估计的不确定性量化。使用开源概率编程语言Stan进行必要的计算。通过敏感性分析和样本外预测,我们发现我们的简单且可解释的模型提供了证据,证明人类流动性的减少改变了病例动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Compartment Model of Human Mobility and Early Covid-19 Dynamics in NYC
In this paper, we build a mechanistic system to understand the relation between a reduction in human mobility and Covid-19 spread dynamics within New York City. To this end, we propose a multivariate compartmental model that jointly models smartphone mobility data and case counts during the first 90 days of the epidemic. Parameter calibration is achieved through the formulation of a general Bayesian hierarchical model to provide uncertainty quantification of resulting estimates. The open-source probabilistic programming language Stan is used for the requisite computation. Through sensitivity analysis and out-of-sample forecasting, we find our simple and interpretable model provides evidence that reductions in human mobility altered case dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Multivariate Spatial Dependencies Using Graphical Models. Effect of model space priors on statistical inference with model uncertainty. Bayesian Variable Selection in Double Generalized Linear Tweedie Spatial Process Models Bayesian D-Optimal Design of Experiments with Quantitative and Qualitative Responses Construction of Supersaturated Designs with Small Coherence for Variable Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1