紧密编织回归:一种估计随机数据完全缺失的有效方法

Ahmed Abdulkadir, Bannister Jerry Zachary, Nafisat Yusuf, Kabiru Musa
{"title":"紧密编织回归:一种估计随机数据完全缺失的有效方法","authors":"Ahmed Abdulkadir, Bannister Jerry Zachary, Nafisat Yusuf, Kabiru Musa","doi":"10.9734/ajpas/2023/v24i3528","DOIUrl":null,"url":null,"abstract":"The study aimed at using the Close-Knit Regression (CKR) technique to approximate values absent because of the missing completely at random mechanism. Bivariate datasets were generated and simulated for MCAR mechanism at low (10%) and high (60%) rates. The CKR method was used and compared alongside other single imputation techniques like mean imputation, simple regression and K- Nearest Neighbors (K-NN). The difference between parameter estimates like mean, correlation coefficient (r), maximum, minimum and standard deviation which were gotten using predicted data and those using the original data as well as assessment of error rates like mean absolute error (MAE) and root mean square error (RMSE) were used as metrics in deciding the efficiency of the techniques. Results showed that the CKR technique was the best from those considered, with its estimated data having parameter estimates closer to that of the original whilst having the least error rates at 10% (MAE of 0.01 and RMSE of 0.047) and 60% (MAE of 0.021 and RMSE of 0.073) in comparison to other methods, CKR technique is a suitable single imputation technique which produces estimates close to the original data and parameters with low error rates when data are MCAR.","PeriodicalId":8532,"journal":{"name":"Asian Journal of Probability and Statistics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Close-Knit-Regression: An Efficient Technique in Estimating Missing Completely at Random Data\",\"authors\":\"Ahmed Abdulkadir, Bannister Jerry Zachary, Nafisat Yusuf, Kabiru Musa\",\"doi\":\"10.9734/ajpas/2023/v24i3528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aimed at using the Close-Knit Regression (CKR) technique to approximate values absent because of the missing completely at random mechanism. Bivariate datasets were generated and simulated for MCAR mechanism at low (10%) and high (60%) rates. The CKR method was used and compared alongside other single imputation techniques like mean imputation, simple regression and K- Nearest Neighbors (K-NN). The difference between parameter estimates like mean, correlation coefficient (r), maximum, minimum and standard deviation which were gotten using predicted data and those using the original data as well as assessment of error rates like mean absolute error (MAE) and root mean square error (RMSE) were used as metrics in deciding the efficiency of the techniques. Results showed that the CKR technique was the best from those considered, with its estimated data having parameter estimates closer to that of the original whilst having the least error rates at 10% (MAE of 0.01 and RMSE of 0.047) and 60% (MAE of 0.021 and RMSE of 0.073) in comparison to other methods, CKR technique is a suitable single imputation technique which produces estimates close to the original data and parameters with low error rates when data are MCAR.\",\"PeriodicalId\":8532,\"journal\":{\"name\":\"Asian Journal of Probability and Statistics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajpas/2023/v24i3528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajpas/2023/v24i3528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用紧密回归(CKR)技术在随机机制下近似由于完全缺失而缺失的值。生成双变量数据集,并在低(10%)和高(60%)率下模拟MCAR机制。使用CKR方法并将其与其他单一imputation技术(如mean imputation, simple regression和K- Nearest Neighbors (K- nn))进行比较。使用预测数据获得的参数估计值(如平均值、相关系数(r)、最大值、最小值和标准差)与使用原始数据获得的参数估计值之间的差异,以及对平均绝对误差(MAE)和均方根误差(RMSE)等错误率的评估,被用作决定技术效率的指标。结果表明,与其他方法相比,CKR技术是最好的,其估计数据的参数估计值更接近原始数据,错误率最低,分别为10% (MAE为0.01,RMSE为0.047)和60% (MAE为0.021,RMSE为0.073)。CKR技术是一种适合的单次插值技术,当数据是MCAR时,它产生的估计值接近原始数据,参数错误率低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Close-Knit-Regression: An Efficient Technique in Estimating Missing Completely at Random Data
The study aimed at using the Close-Knit Regression (CKR) technique to approximate values absent because of the missing completely at random mechanism. Bivariate datasets were generated and simulated for MCAR mechanism at low (10%) and high (60%) rates. The CKR method was used and compared alongside other single imputation techniques like mean imputation, simple regression and K- Nearest Neighbors (K-NN). The difference between parameter estimates like mean, correlation coefficient (r), maximum, minimum and standard deviation which were gotten using predicted data and those using the original data as well as assessment of error rates like mean absolute error (MAE) and root mean square error (RMSE) were used as metrics in deciding the efficiency of the techniques. Results showed that the CKR technique was the best from those considered, with its estimated data having parameter estimates closer to that of the original whilst having the least error rates at 10% (MAE of 0.01 and RMSE of 0.047) and 60% (MAE of 0.021 and RMSE of 0.073) in comparison to other methods, CKR technique is a suitable single imputation technique which produces estimates close to the original data and parameters with low error rates when data are MCAR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian Sequential Updation and Prediction of Currency in Circulation Using a Weighted Prior Assessment of Required Sample Sizes for Estimating Proportions Rainfall Pattern in Kenya: Bayesian Non-parametric Model Based on the Normalized Generalized Gamma Process Advancing Retail Predictions: Integrating Diverse Machine Learning Models for Accurate Walmart Sales Forecasting Common Fixed-Point Theorem for Expansive Mappings in Dualistic Partial Metric Spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1