加密货币、盈利能力和推特:一个大框架

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-07-18 DOI:10.1142/s2194565922500026
Jo-Hui Chen, Sabbor Hussain, Yun Cheng
{"title":"加密货币、盈利能力和推特:一个大框架","authors":"Jo-Hui Chen, Sabbor Hussain, Yun Cheng","doi":"10.1142/s2194565922500026","DOIUrl":null,"url":null,"abstract":"This paper used two frames based on the Multivariate General Autoregressive Conditional Heteroscedasticity (MGARCH) model, namely the Dynamic Conditional Correlation (DCC) and the Baba, Engle, Kraft, and Kroner (BEKK) models. DCC parameters confirmed the significant results to assess the spillover effects for return volatilities of five cryptocurrencies (Bitcoin, Dogecoin, Ethereum, Monero, and Peercoin). It indicated that cryptocurrency market returns would be volatile, connected with the time-varying pattern. Most ARCH and GARCH effects were significant in estimating the three pairs of return-mining profitability, return-Tweet, and mining profitability-Tweet. For the cryptocurrency return and profitability pair, returns depended on future price returns and cross-volatility spillover and were greater than their own volatility spillover effect. Moreover, the BEKK diagonal model was found to be the best model for return-mining profitability. The research community can also gain valuable insights into cryptocurrency investment models, offering wider future areas of research.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRYPTOCURRENCY, PROFITABILITY, AND TWEETER: A MGARCH FRAMEWORK\",\"authors\":\"Jo-Hui Chen, Sabbor Hussain, Yun Cheng\",\"doi\":\"10.1142/s2194565922500026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper used two frames based on the Multivariate General Autoregressive Conditional Heteroscedasticity (MGARCH) model, namely the Dynamic Conditional Correlation (DCC) and the Baba, Engle, Kraft, and Kroner (BEKK) models. DCC parameters confirmed the significant results to assess the spillover effects for return volatilities of five cryptocurrencies (Bitcoin, Dogecoin, Ethereum, Monero, and Peercoin). It indicated that cryptocurrency market returns would be volatile, connected with the time-varying pattern. Most ARCH and GARCH effects were significant in estimating the three pairs of return-mining profitability, return-Tweet, and mining profitability-Tweet. For the cryptocurrency return and profitability pair, returns depended on future price returns and cross-volatility spillover and were greater than their own volatility spillover effect. Moreover, the BEKK diagonal model was found to be the best model for return-mining profitability. The research community can also gain valuable insights into cryptocurrency investment models, offering wider future areas of research.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2194565922500026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2194565922500026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文采用了基于多元一般自回归条件异方差(MGARCH)模型的两种框架,即动态条件相关(DCC)模型和Baba, Engle, Kraft, and Kroner (BEKK)模型。DCC参数证实了评估五种加密货币(比特币、狗狗币、以太坊、门罗币和Peercoin)回报波动的溢出效应的重要结果。它表明,加密货币市场的回报将是不稳定的,与时变模式有关。大多数ARCH和GARCH效应在估计回报-挖矿盈利能力、回报-推特和挖矿盈利能力-推特三对时显著。对于加密货币收益和盈利能力对,收益取决于未来价格收益和交叉波动溢出效应,且大于其自身波动溢出效应。此外,发现BEKK对角模型是回报采矿盈利能力的最佳模型。研究界还可以获得有关加密货币投资模型的宝贵见解,从而提供更广泛的未来研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRYPTOCURRENCY, PROFITABILITY, AND TWEETER: A MGARCH FRAMEWORK
This paper used two frames based on the Multivariate General Autoregressive Conditional Heteroscedasticity (MGARCH) model, namely the Dynamic Conditional Correlation (DCC) and the Baba, Engle, Kraft, and Kroner (BEKK) models. DCC parameters confirmed the significant results to assess the spillover effects for return volatilities of five cryptocurrencies (Bitcoin, Dogecoin, Ethereum, Monero, and Peercoin). It indicated that cryptocurrency market returns would be volatile, connected with the time-varying pattern. Most ARCH and GARCH effects were significant in estimating the three pairs of return-mining profitability, return-Tweet, and mining profitability-Tweet. For the cryptocurrency return and profitability pair, returns depended on future price returns and cross-volatility spillover and were greater than their own volatility spillover effect. Moreover, the BEKK diagonal model was found to be the best model for return-mining profitability. The research community can also gain valuable insights into cryptocurrency investment models, offering wider future areas of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
The change process questionnaire (CPQ): A psychometric validation. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1