{"title":"碰撞对快速点火中快速电子生成和输运的影响","authors":"H. Sakagami, Y. Kaseda, T. Taguchi, T. Johzaki","doi":"10.1017/S0263034611000887","DOIUrl":null,"url":null,"abstract":"As the binary collision process requires much more computation time, a statistical electron-electron collision model based on modified Langevin equation is developed to reduce it. This collision model and a simple electron-ion scattering model are installed into one-dimensional PIC code, and collisional effects on fast electron generation and transport in fast ignition are investigated. In the collisional case, initially thermal electrons are heated up to a few hundred keV due to direct energy transfer by electron-electron collision, and they are also heated up to MeV by Joule heating induced by electron-ion scattering. Thus the number of low energy component of fast electrons increase than that in the collisionless case.","PeriodicalId":7974,"journal":{"name":"Annual Report of National Institute for Fusion Science","volume":"110 1","pages":"405"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Collisional Effects on Fast Electron Generation and Transport in Fast Ignition\",\"authors\":\"H. Sakagami, Y. Kaseda, T. Taguchi, T. Johzaki\",\"doi\":\"10.1017/S0263034611000887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the binary collision process requires much more computation time, a statistical electron-electron collision model based on modified Langevin equation is developed to reduce it. This collision model and a simple electron-ion scattering model are installed into one-dimensional PIC code, and collisional effects on fast electron generation and transport in fast ignition are investigated. In the collisional case, initially thermal electrons are heated up to a few hundred keV due to direct energy transfer by electron-electron collision, and they are also heated up to MeV by Joule heating induced by electron-ion scattering. Thus the number of low energy component of fast electrons increase than that in the collisionless case.\",\"PeriodicalId\":7974,\"journal\":{\"name\":\"Annual Report of National Institute for Fusion Science\",\"volume\":\"110 1\",\"pages\":\"405\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Report of National Institute for Fusion Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0263034611000887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Report of National Institute for Fusion Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0263034611000887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collisional Effects on Fast Electron Generation and Transport in Fast Ignition
As the binary collision process requires much more computation time, a statistical electron-electron collision model based on modified Langevin equation is developed to reduce it. This collision model and a simple electron-ion scattering model are installed into one-dimensional PIC code, and collisional effects on fast electron generation and transport in fast ignition are investigated. In the collisional case, initially thermal electrons are heated up to a few hundred keV due to direct energy transfer by electron-electron collision, and they are also heated up to MeV by Joule heating induced by electron-ion scattering. Thus the number of low energy component of fast electrons increase than that in the collisionless case.