S. Saincher, John Wesly Gongalla, P. Vineesh, V. Sriram
{"title":"矩形月池与聚焦波相互作用的间隙激励和涡旋动力学的实验和fnp - rans研究","authors":"S. Saincher, John Wesly Gongalla, P. Vineesh, V. Sriram","doi":"10.1115/omae2021-61842","DOIUrl":null,"url":null,"abstract":"\n Moonpools are designed to provide a calm environment for lowering of equipment from ships. Considerable research effort has been invested towards understanding water column excitation within a moonpool. However, most recent investigations consider regular waves. The nature of interaction between focused waves and a moonpool is not well-understood; the present work strives to fill this research gap. A series of experiments have been carried out in a 22 m long glass flume in the Department of Ocean Engineering at IIT Madras. Two identical cuboidal boxes were affixed with a 0.15 m gap representing a rectangular moonpool. Focused waves based on a constant steepness spectrum were generated in 0.6 m water depth by a piston-type wave-paddle. The focusing point was set at the center of the moonpool and wave-focusing experiments were performed with and without the twin-body. Wave elevation at various locations along the flume was measured using five wave-gauges. Next, the experiments were numerically replicated using the in-house codes IITM-FNPT2D (for inviscid wave generation) and IITM-RANS3D (for fully viscous wave-structure interaction). Gap-excitation at the instant of focusing has been quantified and correlated with focused wave characteristics and with dynamics of spanwise vortices generated at the edges of the moonpool.","PeriodicalId":23784,"journal":{"name":"Volume 6: Ocean Engineering","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental and FNPT-RANS Investigations Into Gap-Excitation and Vortex Dynamics in a Rectangular Moonpool Interacting With Focused Waves\",\"authors\":\"S. Saincher, John Wesly Gongalla, P. Vineesh, V. Sriram\",\"doi\":\"10.1115/omae2021-61842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Moonpools are designed to provide a calm environment for lowering of equipment from ships. Considerable research effort has been invested towards understanding water column excitation within a moonpool. However, most recent investigations consider regular waves. The nature of interaction between focused waves and a moonpool is not well-understood; the present work strives to fill this research gap. A series of experiments have been carried out in a 22 m long glass flume in the Department of Ocean Engineering at IIT Madras. Two identical cuboidal boxes were affixed with a 0.15 m gap representing a rectangular moonpool. Focused waves based on a constant steepness spectrum were generated in 0.6 m water depth by a piston-type wave-paddle. The focusing point was set at the center of the moonpool and wave-focusing experiments were performed with and without the twin-body. Wave elevation at various locations along the flume was measured using five wave-gauges. Next, the experiments were numerically replicated using the in-house codes IITM-FNPT2D (for inviscid wave generation) and IITM-RANS3D (for fully viscous wave-structure interaction). Gap-excitation at the instant of focusing has been quantified and correlated with focused wave characteristics and with dynamics of spanwise vortices generated at the edges of the moonpool.\",\"PeriodicalId\":23784,\"journal\":{\"name\":\"Volume 6: Ocean Engineering\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2021-61842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-61842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and FNPT-RANS Investigations Into Gap-Excitation and Vortex Dynamics in a Rectangular Moonpool Interacting With Focused Waves
Moonpools are designed to provide a calm environment for lowering of equipment from ships. Considerable research effort has been invested towards understanding water column excitation within a moonpool. However, most recent investigations consider regular waves. The nature of interaction between focused waves and a moonpool is not well-understood; the present work strives to fill this research gap. A series of experiments have been carried out in a 22 m long glass flume in the Department of Ocean Engineering at IIT Madras. Two identical cuboidal boxes were affixed with a 0.15 m gap representing a rectangular moonpool. Focused waves based on a constant steepness spectrum were generated in 0.6 m water depth by a piston-type wave-paddle. The focusing point was set at the center of the moonpool and wave-focusing experiments were performed with and without the twin-body. Wave elevation at various locations along the flume was measured using five wave-gauges. Next, the experiments were numerically replicated using the in-house codes IITM-FNPT2D (for inviscid wave generation) and IITM-RANS3D (for fully viscous wave-structure interaction). Gap-excitation at the instant of focusing has been quantified and correlated with focused wave characteristics and with dynamics of spanwise vortices generated at the edges of the moonpool.