{"title":"超越单粒子图像的Ni磁康普顿剖面:动态平均场理论的数值精确和微扰解算","authors":"A. James, M. Sekania, S. Dugdale, L. Chioncel","doi":"10.1103/PhysRevB.103.115144","DOIUrl":null,"url":null,"abstract":"We calculated the magnetic Compton profiles (MCPs) of Ni using density functional theory supplemented by electronic correlations treated within dynamical mean-field theory (DMFT). We present comparisons between the theoretical and experimental MCPs. The theoretical MCPs were calculated using the KKR method with the perturbative spin-polarized T-matrix fluctuation exchange approximation DMFT solver, as well as with the full potential linear augmented planewave method with the numerically exact continuous-time quantum Monte Carlo DMFT solver. We show that the total magnetic moment decreases with the intra-atomic Coulomb repulsion $U$, which is also reflected in the corresponding MCPs. The total magnetic moment obtained in experimental measurements can be reproduced by intermediate values of $U$. The spectral function reveals that the minority X$_2$ Fermi surface pocket shrinks and gets shallower with respect to the density functional theory calculations.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Magnetic Compton profiles of Ni beyond the one-particle picture: Numerically exact and perturbative solvers of dynamical mean-field theory\",\"authors\":\"A. James, M. Sekania, S. Dugdale, L. Chioncel\",\"doi\":\"10.1103/PhysRevB.103.115144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We calculated the magnetic Compton profiles (MCPs) of Ni using density functional theory supplemented by electronic correlations treated within dynamical mean-field theory (DMFT). We present comparisons between the theoretical and experimental MCPs. The theoretical MCPs were calculated using the KKR method with the perturbative spin-polarized T-matrix fluctuation exchange approximation DMFT solver, as well as with the full potential linear augmented planewave method with the numerically exact continuous-time quantum Monte Carlo DMFT solver. We show that the total magnetic moment decreases with the intra-atomic Coulomb repulsion $U$, which is also reflected in the corresponding MCPs. The total magnetic moment obtained in experimental measurements can be reproduced by intermediate values of $U$. The spectral function reveals that the minority X$_2$ Fermi surface pocket shrinks and gets shallower with respect to the density functional theory calculations.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevB.103.115144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.115144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic Compton profiles of Ni beyond the one-particle picture: Numerically exact and perturbative solvers of dynamical mean-field theory
We calculated the magnetic Compton profiles (MCPs) of Ni using density functional theory supplemented by electronic correlations treated within dynamical mean-field theory (DMFT). We present comparisons between the theoretical and experimental MCPs. The theoretical MCPs were calculated using the KKR method with the perturbative spin-polarized T-matrix fluctuation exchange approximation DMFT solver, as well as with the full potential linear augmented planewave method with the numerically exact continuous-time quantum Monte Carlo DMFT solver. We show that the total magnetic moment decreases with the intra-atomic Coulomb repulsion $U$, which is also reflected in the corresponding MCPs. The total magnetic moment obtained in experimental measurements can be reproduced by intermediate values of $U$. The spectral function reveals that the minority X$_2$ Fermi surface pocket shrinks and gets shallower with respect to the density functional theory calculations.