房价预测方法与输入数据类型综述

M. Geerts, S. V. Broucke, Jochen De Weerdt
{"title":"房价预测方法与输入数据类型综述","authors":"M. Geerts, S. V. Broucke, Jochen De Weerdt","doi":"10.3390/ijgi12050200","DOIUrl":null,"url":null,"abstract":"Predicting house prices is a challenging task that many researchers have attempted to address. As accurate house prices allow better informing parties in the real estate market, improving housing policies and real estate appraisal, a comprehensive overview of house price prediction strategies is valuable for both research and society. In this work, we present a systematic literature review in order to provide insights with regard to the data types and modeling approaches that have been utilized in the current body of research. As such, we identified 93 articles published between 1992 and 2021 presenting a particular technique for house price prediction. Subsequently, we scrutinized these works and scored them according to model and data novelty. A cluster analysis allowed mapping of the property valuation domain and identification of trends. Although conventional methods and traditional input data remain predominant, house price prediction research is slowly adopting more advanced techniques and innovative data sources. In addition, we identify opportunities to include more advanced input data types such as unstructured data and complex spatial data and to introduce deep learning and tailored methods, which could guide further research.","PeriodicalId":14614,"journal":{"name":"ISPRS Int. J. Geo Inf.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Survey of Methods and Input Data Types for House Price Prediction\",\"authors\":\"M. Geerts, S. V. Broucke, Jochen De Weerdt\",\"doi\":\"10.3390/ijgi12050200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting house prices is a challenging task that many researchers have attempted to address. As accurate house prices allow better informing parties in the real estate market, improving housing policies and real estate appraisal, a comprehensive overview of house price prediction strategies is valuable for both research and society. In this work, we present a systematic literature review in order to provide insights with regard to the data types and modeling approaches that have been utilized in the current body of research. As such, we identified 93 articles published between 1992 and 2021 presenting a particular technique for house price prediction. Subsequently, we scrutinized these works and scored them according to model and data novelty. A cluster analysis allowed mapping of the property valuation domain and identification of trends. Although conventional methods and traditional input data remain predominant, house price prediction research is slowly adopting more advanced techniques and innovative data sources. In addition, we identify opportunities to include more advanced input data types such as unstructured data and complex spatial data and to introduce deep learning and tailored methods, which could guide further research.\",\"PeriodicalId\":14614,\"journal\":{\"name\":\"ISPRS Int. J. Geo Inf.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Int. J. Geo Inf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi12050200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Int. J. Geo Inf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijgi12050200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

预测房价是一项具有挑战性的任务,许多研究人员都试图解决这个问题。由于准确的房价可以更好地告知房地产市场各方,改善住房政策和房地产评估,因此全面概述房价预测策略对研究和社会都有价值。在这项工作中,我们提出了一个系统的文献综述,以便提供关于数据类型和建模方法的见解,这些方法已在当前的研究中使用。因此,我们确定了1992年至2021年间发表的93篇文章,提出了一种特定的房价预测技术。随后,我们仔细审查这些作品,并根据模型和数据的新颖性进行评分。聚类分析允许绘制财产估价领域和确定趋势。虽然传统的方法和传统的输入数据仍然占主导地位,但房价预测研究正在慢慢采用更先进的技术和创新的数据源。此外,我们确定了包括更高级输入数据类型(如非结构化数据和复杂空间数据)的机会,并引入深度学习和定制方法,这可以指导进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey of Methods and Input Data Types for House Price Prediction
Predicting house prices is a challenging task that many researchers have attempted to address. As accurate house prices allow better informing parties in the real estate market, improving housing policies and real estate appraisal, a comprehensive overview of house price prediction strategies is valuable for both research and society. In this work, we present a systematic literature review in order to provide insights with regard to the data types and modeling approaches that have been utilized in the current body of research. As such, we identified 93 articles published between 1992 and 2021 presenting a particular technique for house price prediction. Subsequently, we scrutinized these works and scored them according to model and data novelty. A cluster analysis allowed mapping of the property valuation domain and identification of trends. Although conventional methods and traditional input data remain predominant, house price prediction research is slowly adopting more advanced techniques and innovative data sources. In addition, we identify opportunities to include more advanced input data types such as unstructured data and complex spatial data and to introduce deep learning and tailored methods, which could guide further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vertical vs. Horizontal Fractal Dimensions of Roads in Relation to Relief Characteristics A Head/Tail Breaks-Based Approach to Characterizing Space-Time Risks of COVID-19 Epidemic in China's Cities Mapping Gross Domestic Product Distribution at 1 km Resolution across Thailand Using the Random Forest Area-to-Area Regression Kriging Model Effects of Spatial Reference Frames, Map Dimensionality, and Navigation Modes on Spatial Orientation Efficiency Efficient Construction of Voxel Models for Ore Bodies Using an Improved Winding Number Algorithm and CUDA Parallel Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1