动态傅立叶变换红外光谱研究了丙烯在na - h -丝光沸石上选择性还原NO的表面硝酸盐的反应性

A. Satsuma, T. Enjoji, K. Shimizu, Kazuhiro Sato, H. Yoshida, T. Hattori
{"title":"动态傅立叶变换红外光谱研究了丙烯在na - h -丝光沸石上选择性还原NO的表面硝酸盐的反应性","authors":"A. Satsuma, T. Enjoji, K. Shimizu, Kazuhiro Sato, H. Yoshida, T. Hattori","doi":"10.1039/A705292H","DOIUrl":null,"url":null,"abstract":"The reactivity of surface adsorbed species over Na–H-mordenite has been examined by using dynamic insitu IR spectroscopy and the mechanism of the selective reduction of NO with C3H6 discussed. When Na–H-mordenite was exposed to a flow of NO–C3H6–O2 at 573 K, a strong absorption band assignable to NO3− was observed at 1394 cm−1. The intensity of the band significantly decreased when the flowing gas was switched to C3H6–O2. The rate of decrease in NO3− was ca. 3.0 × 10−8 mol g−1 s−1 which was equivalent to the rate of NO conversion to N2 in the NO–C3H6–O2 flow reaction. Thus, it was indicated that NO3− is a reaction intermediate for the formation of N2 and the surface reaction of NO3− is the rate determining step of the formation of N2 in the selective reduction of NO with C3H6. When the flowing gas was switched to C3H6, the rate of decrease in NO3− species was twice as fast as that in C3H6–O2, i.e., the reactivity of NO3− species strongly depended on the presence of O2. Since NO was also formed simultaneously with N2 in the case of NO2–C3H6 reaction, it was suggested that NO3− species oxidize C3H6 accompanying not only the conversion into N2 but also the dissociative decomposition into NO. Weak bands assignable to adsorbed hydrocarbon, carbonyl, nitrite and isocyanate were also observed. On the basis of the changes in the intensity of these bands, the consecutive reaction of surface organic species with NO3− species over Na–H-mordenite was suggested.","PeriodicalId":17286,"journal":{"name":"Journal of the Chemical Society, Faraday Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Reactivity of surface nitrate species in the selective reduction of NO with propene over Na–H-mordenite as investigated by dynamic FTIR spectroscopy\",\"authors\":\"A. Satsuma, T. Enjoji, K. Shimizu, Kazuhiro Sato, H. Yoshida, T. Hattori\",\"doi\":\"10.1039/A705292H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reactivity of surface adsorbed species over Na–H-mordenite has been examined by using dynamic insitu IR spectroscopy and the mechanism of the selective reduction of NO with C3H6 discussed. When Na–H-mordenite was exposed to a flow of NO–C3H6–O2 at 573 K, a strong absorption band assignable to NO3− was observed at 1394 cm−1. The intensity of the band significantly decreased when the flowing gas was switched to C3H6–O2. The rate of decrease in NO3− was ca. 3.0 × 10−8 mol g−1 s−1 which was equivalent to the rate of NO conversion to N2 in the NO–C3H6–O2 flow reaction. Thus, it was indicated that NO3− is a reaction intermediate for the formation of N2 and the surface reaction of NO3− is the rate determining step of the formation of N2 in the selective reduction of NO with C3H6. When the flowing gas was switched to C3H6, the rate of decrease in NO3− species was twice as fast as that in C3H6–O2, i.e., the reactivity of NO3− species strongly depended on the presence of O2. Since NO was also formed simultaneously with N2 in the case of NO2–C3H6 reaction, it was suggested that NO3− species oxidize C3H6 accompanying not only the conversion into N2 but also the dissociative decomposition into NO. Weak bands assignable to adsorbed hydrocarbon, carbonyl, nitrite and isocyanate were also observed. On the basis of the changes in the intensity of these bands, the consecutive reaction of surface organic species with NO3− species over Na–H-mordenite was suggested.\",\"PeriodicalId\":17286,\"journal\":{\"name\":\"Journal of the Chemical Society, Faraday Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Chemical Society, Faraday Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/A705292H\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Chemical Society, Faraday Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/A705292H","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

采用动态原位红外光谱研究了na - h -丝光沸石表面吸附物质的反应性,并探讨了C3H6选择性还原NO的机理。当na - h -丝光沸石在573 K下暴露于NO-C3H6-O2流中时,在1394 cm−1处观察到NO3−的强吸收带。当流动气体切换为C3H6-O2时,条带强度显著降低。NO3−的减少速率约为3.0 × 10−8 mol g−1 s−1,相当于NO - c3h6 - o2流动反应中NO转化为N2的速率。说明NO3−是生成N2的反应中间体,NO3−的表面反应是C3H6选择性还原NO过程中N2生成速率的决定步骤。当流动气体切换为C3H6时,NO3−种类的减少速度是C3H6 - O2时的两倍,即NO3−种类的反应性强烈依赖于O2的存在。在NO2-C3H6反应中,NO也与N2同时生成,说明NO3−物质对C3H6的氧化不仅伴随着转化成N2,而且伴随着解离分解成NO。吸附的烃类、羰基、亚硝酸盐和异氰酸酯也有弱带。根据这些谱带强度的变化,提出了表面有机物质与NO3−物质在na - h -丝光沸石上的连续反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reactivity of surface nitrate species in the selective reduction of NO with propene over Na–H-mordenite as investigated by dynamic FTIR spectroscopy
The reactivity of surface adsorbed species over Na–H-mordenite has been examined by using dynamic insitu IR spectroscopy and the mechanism of the selective reduction of NO with C3H6 discussed. When Na–H-mordenite was exposed to a flow of NO–C3H6–O2 at 573 K, a strong absorption band assignable to NO3− was observed at 1394 cm−1. The intensity of the band significantly decreased when the flowing gas was switched to C3H6–O2. The rate of decrease in NO3− was ca. 3.0 × 10−8 mol g−1 s−1 which was equivalent to the rate of NO conversion to N2 in the NO–C3H6–O2 flow reaction. Thus, it was indicated that NO3− is a reaction intermediate for the formation of N2 and the surface reaction of NO3− is the rate determining step of the formation of N2 in the selective reduction of NO with C3H6. When the flowing gas was switched to C3H6, the rate of decrease in NO3− species was twice as fast as that in C3H6–O2, i.e., the reactivity of NO3− species strongly depended on the presence of O2. Since NO was also formed simultaneously with N2 in the case of NO2–C3H6 reaction, it was suggested that NO3− species oxidize C3H6 accompanying not only the conversion into N2 but also the dissociative decomposition into NO. Weak bands assignable to adsorbed hydrocarbon, carbonyl, nitrite and isocyanate were also observed. On the basis of the changes in the intensity of these bands, the consecutive reaction of surface organic species with NO3− species over Na–H-mordenite was suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very low pressure pyrolysis of phenylacetic acid Photophysics and photoreactivity of substituted thioxanthones Hydrogen bonding Part 44 Thermodynamics of complexation of 3,5-dichlorophenol with ketones and ethers in cyclohexane: the Badger–Bauer relationship IR spectroscopy of small and weakly interacting molecular probes for acidic and basic zeolites Electron transfer in proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1