用量子猝灭检测多体迁移率边缘

P. Naldesi, E. Ercolessi, T. Roscilde
{"title":"用量子猝灭检测多体迁移率边缘","authors":"P. Naldesi, E. Ercolessi, T. Roscilde","doi":"10.21468/SciPostPhys.1.1.010","DOIUrl":null,"url":null,"abstract":"The many-body localization (MBL) transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from \"extended/ergodic\" (exhibiting extensive entanglement entropies and fluctuations) to \"localized\" (exhibiting area-law scaling of entanglement and fluctuations). The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using \"quantum-quench spectroscopy\", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Detecting a many-body mobility edge with quantum quenches\",\"authors\":\"P. Naldesi, E. Ercolessi, T. Roscilde\",\"doi\":\"10.21468/SciPostPhys.1.1.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The many-body localization (MBL) transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from \\\"extended/ergodic\\\" (exhibiting extensive entanglement entropies and fluctuations) to \\\"localized\\\" (exhibiting area-law scaling of entanglement and fluctuations). The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using \\\"quantum-quench spectroscopy\\\", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21468/SciPostPhys.1.1.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SciPostPhys.1.1.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

多体局域化(MBL)跃迁是一种涉及无序量子多体哈密顿量的高激发本征态的量子相变,它从“扩展/遍历经”(表现出广泛的纠缠熵和涨落)进化到“局域化”(表现出纠缠和涨落的面积律缩放)。MBL跃迁可以由给定光谱范围内的无序强度驱动,也可以由固定无序处的能量密度驱动——如果系统具有多体迁移率边缘。在这里,我们提出通过“量子猝灭光谱”来探索后一种机制,即通过可变宽度的量子猝灭,在可控光谱区域内将系统的状态制备为哈密顿量的特征态叠加。通过对准周期势中相互作用的无自旋费米子链的数值研究,证明了该系统具有多体迁移率边缘;我们证明了它的存在转化为准周期势强度猝灭后的时间演化中明显的动态跃迁,以及准稳态长时间尺度性质的跃迁。我们的结果为使用冷原子装置实验观察多体迁移率边缘提供了一种实用的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting a many-body mobility edge with quantum quenches
The many-body localization (MBL) transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from "extended/ergodic" (exhibiting extensive entanglement entropies and fluctuations) to "localized" (exhibiting area-law scaling of entanglement and fluctuations). The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using "quantum-quench spectroscopy", namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multifractality and Fock-space localization in many-body localized states: One-particle density matrix perspective Thouless Energy Across Many-Body Localization Transition in Floquet Systems. Curvature-driven ac-assisted creep dynamics of magnetic domain walls Duality between two generalized Aubry-André models with exact mobility edges Relationship between two-level systems and quasi-localized normal modes in glasses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1