上下文感知事件驱动的立体匹配

Dongqing Zou, Ping Guo, Qiang Wang, Xiaotao Wang, Guangqi Shao, Feng Shi, Jia Li, P. Park
{"title":"上下文感知事件驱动的立体匹配","authors":"Dongqing Zou, Ping Guo, Qiang Wang, Xiaotao Wang, Guangqi Shao, Feng Shi, Jia Li, P. Park","doi":"10.1109/ICIP.2016.7532523","DOIUrl":null,"url":null,"abstract":"Similarity measuring plays as an import role in stereo matching, whether for visual data from standard cameras or for those from novel sensors such as Dynamic Vision Sensors (DVS). Generally speaking, robust feature descriptors contribute to designing a powerful similarity measurement, as demonstrated by classic stereo matching methods. However, the kind and representative ability of feature descriptors for DVS data are so limited that achieving accurate stereo matching on DVS data becomes very challenging. In this paper, a novel feature descriptor is proposed to improve the accuracy for DVS stereo matching. Our feature descriptor can describe the local context or distribution of the DVS data, contributing to constructing an effective similarity measurement for DVS data matching, yielding an accurate stereo matching result. Our method is evaluated by testing our method on groundtruth data and comparing with various standard stereo methods. Experiments demonstrate the efficiency and effectiveness of our method.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"23 1","pages":"1076-1080"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Context-aware event-driven stereo matching\",\"authors\":\"Dongqing Zou, Ping Guo, Qiang Wang, Xiaotao Wang, Guangqi Shao, Feng Shi, Jia Li, P. Park\",\"doi\":\"10.1109/ICIP.2016.7532523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity measuring plays as an import role in stereo matching, whether for visual data from standard cameras or for those from novel sensors such as Dynamic Vision Sensors (DVS). Generally speaking, robust feature descriptors contribute to designing a powerful similarity measurement, as demonstrated by classic stereo matching methods. However, the kind and representative ability of feature descriptors for DVS data are so limited that achieving accurate stereo matching on DVS data becomes very challenging. In this paper, a novel feature descriptor is proposed to improve the accuracy for DVS stereo matching. Our feature descriptor can describe the local context or distribution of the DVS data, contributing to constructing an effective similarity measurement for DVS data matching, yielding an accurate stereo matching result. Our method is evaluated by testing our method on groundtruth data and comparing with various standard stereo methods. Experiments demonstrate the efficiency and effectiveness of our method.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"23 1\",\"pages\":\"1076-1080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

相似性测量在立体匹配中起着重要的作用,无论是对于来自标准摄像机的视觉数据还是来自动态视觉传感器(DVS)等新型传感器的视觉数据。一般来说,鲁棒特征描述符有助于设计强大的相似性度量,经典的立体匹配方法证明了这一点。然而,分布式交换机数据的特征描述符的种类和代表能力有限,使得对分布式交换机数据进行精确的立体匹配变得非常困难。本文提出了一种新的特征描述符,以提高分布式交换机立体匹配的精度。我们的特征描述符可以描述分布式交换机数据的本地上下文或分布,有助于构建有效的分布式交换机数据匹配相似度度量,从而产生准确的立体匹配结果。通过对真实数据的测试和与各种标准立体方法的比较,对我们的方法进行了评价。实验证明了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Context-aware event-driven stereo matching
Similarity measuring plays as an import role in stereo matching, whether for visual data from standard cameras or for those from novel sensors such as Dynamic Vision Sensors (DVS). Generally speaking, robust feature descriptors contribute to designing a powerful similarity measurement, as demonstrated by classic stereo matching methods. However, the kind and representative ability of feature descriptors for DVS data are so limited that achieving accurate stereo matching on DVS data becomes very challenging. In this paper, a novel feature descriptor is proposed to improve the accuracy for DVS stereo matching. Our feature descriptor can describe the local context or distribution of the DVS data, contributing to constructing an effective similarity measurement for DVS data matching, yielding an accurate stereo matching result. Our method is evaluated by testing our method on groundtruth data and comparing with various standard stereo methods. Experiments demonstrate the efficiency and effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1