R. Kaempfer, Andrey Popugailo, R. Levy, G. Arad, D. Hillman, Ziv Rotfogel
{"title":"细菌超抗原毒素通过增强B7-2/CD28共刺激受体结合(一个关键的免疫检查点)诱导致命的细胞因子风暴。","authors":"R. Kaempfer, Andrey Popugailo, R. Levy, G. Arad, D. Hillman, Ziv Rotfogel","doi":"10.14800/rci.1500","DOIUrl":null,"url":null,"abstract":"Formation of the costimulatory axis between the B7-2 and CD28 coreceptors is critical for T-cell activation. Superantigens, Gram-positive bacterial virulence factors, cause toxic shock and sepsis by hyperinducing inflammatory cytokines. We report a novel role for costimulatory receptors CD28 and B7-2 as obligatory receptors for superantigens, rendering them therapeutic targets. We show that by engaging not only CD28 but also its coligand B7-2 directly, superantigens potently enhance the interaction between B7-2 and CD28, inducing thereby T-cell hyperactivation. Using a conserved twelve amino-acid domain, superantigens engage both B7-2 and CD28 at their homodimer interfaces, sites far removed from where these receptors interact, implying that inflammatory signaling can be controlled through the receptor homodimer interfaces. Short B7-2 and CD28 dimer interface mimetic peptides bind diverse superantigens, prevent superantigen binding to cell-surface B7-2 or CD28, attenuate inflammatory cytokine overexpression, and protect mice from lethal superantigen challenge. Thus, superantigens induce a cytokine storm by mediating not only the interaction between MHC-II molecule and T-cell receptor but critically, by promoting B7-2/CD28 coreceptor engagement, forcing the principal costimulatory axis to signal excessively. Our findings highlight the B7/CD28 interaction as a bottleneck in signaling for expression of inflammatory cytokines. B7-2 and CD28 homodimer interface mimetic peptides prevent superantigen lethality by blocking the superantigen-host costimulatory receptor interaction.","PeriodicalId":74650,"journal":{"name":"Receptors & clinical investigation","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Bacterial superantigen toxins induce a lethal cytokine storm by enhancing B7-2/CD28 costimulatory receptor engagement, a critical immune checkpoint.\",\"authors\":\"R. Kaempfer, Andrey Popugailo, R. Levy, G. Arad, D. Hillman, Ziv Rotfogel\",\"doi\":\"10.14800/rci.1500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formation of the costimulatory axis between the B7-2 and CD28 coreceptors is critical for T-cell activation. Superantigens, Gram-positive bacterial virulence factors, cause toxic shock and sepsis by hyperinducing inflammatory cytokines. We report a novel role for costimulatory receptors CD28 and B7-2 as obligatory receptors for superantigens, rendering them therapeutic targets. We show that by engaging not only CD28 but also its coligand B7-2 directly, superantigens potently enhance the interaction between B7-2 and CD28, inducing thereby T-cell hyperactivation. Using a conserved twelve amino-acid domain, superantigens engage both B7-2 and CD28 at their homodimer interfaces, sites far removed from where these receptors interact, implying that inflammatory signaling can be controlled through the receptor homodimer interfaces. Short B7-2 and CD28 dimer interface mimetic peptides bind diverse superantigens, prevent superantigen binding to cell-surface B7-2 or CD28, attenuate inflammatory cytokine overexpression, and protect mice from lethal superantigen challenge. Thus, superantigens induce a cytokine storm by mediating not only the interaction between MHC-II molecule and T-cell receptor but critically, by promoting B7-2/CD28 coreceptor engagement, forcing the principal costimulatory axis to signal excessively. Our findings highlight the B7/CD28 interaction as a bottleneck in signaling for expression of inflammatory cytokines. B7-2 and CD28 homodimer interface mimetic peptides prevent superantigen lethality by blocking the superantigen-host costimulatory receptor interaction.\",\"PeriodicalId\":74650,\"journal\":{\"name\":\"Receptors & clinical investigation\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Receptors & clinical investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/rci.1500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors & clinical investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/rci.1500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bacterial superantigen toxins induce a lethal cytokine storm by enhancing B7-2/CD28 costimulatory receptor engagement, a critical immune checkpoint.
Formation of the costimulatory axis between the B7-2 and CD28 coreceptors is critical for T-cell activation. Superantigens, Gram-positive bacterial virulence factors, cause toxic shock and sepsis by hyperinducing inflammatory cytokines. We report a novel role for costimulatory receptors CD28 and B7-2 as obligatory receptors for superantigens, rendering them therapeutic targets. We show that by engaging not only CD28 but also its coligand B7-2 directly, superantigens potently enhance the interaction between B7-2 and CD28, inducing thereby T-cell hyperactivation. Using a conserved twelve amino-acid domain, superantigens engage both B7-2 and CD28 at their homodimer interfaces, sites far removed from where these receptors interact, implying that inflammatory signaling can be controlled through the receptor homodimer interfaces. Short B7-2 and CD28 dimer interface mimetic peptides bind diverse superantigens, prevent superantigen binding to cell-surface B7-2 or CD28, attenuate inflammatory cytokine overexpression, and protect mice from lethal superantigen challenge. Thus, superantigens induce a cytokine storm by mediating not only the interaction between MHC-II molecule and T-cell receptor but critically, by promoting B7-2/CD28 coreceptor engagement, forcing the principal costimulatory axis to signal excessively. Our findings highlight the B7/CD28 interaction as a bottleneck in signaling for expression of inflammatory cytokines. B7-2 and CD28 homodimer interface mimetic peptides prevent superantigen lethality by blocking the superantigen-host costimulatory receptor interaction.