{"title":"c5烯烃气相在氧化铜催化剂上的加氢反应","authors":"M. Sharanda, A. Mylin, O. Zinchenko, V. Brei","doi":"10.15407/kataliz2021.32.093","DOIUrl":null,"url":null,"abstract":"Hydrogenation of unsaturated hydrocarbons is one of the important processes of the modern petrochemical industry. Quite large amount of C4-5 fractions of hydrocarbons containing paraffins and olefins are formed via pyrolysis of light petroleum products. To increase the production of ethylene and propylene, the separated C4-5 fractions are recycled for pyrolysis. Preliminary hydrogenation of olefin compounds in these fractions is necessary. Preferably, the hydrogenation is carried out in the liquid phase at temperatures of 40 – 80 °C under hydrogen pressure up to 15 bar overhigh-cost palladium-containing catalysts. The aim of this work was to elucidate the possibility of efficient hydrogenation of industrial С5 fraction containing C`5 olefins over some mixed copper-oxide catalysts. Hydrogenation of C`5 fraction of pyrolysis of light petroleum products in the vapor phase over such catalysts as CuO-ZnO-ZrO2-Al2O3 and CuO-ZnOAl2O3 in comparison with commercial Pd/Al2O3 catalyst for C4-5 olefins hydrogenation have been studied. The pyrolysis C`5 fraction containing 51 wt. % of unsaturated hydrocarbons (2-methyl-1-butene, 2-pentene, cis-2-pentene, trans-2-pentene, 2-methyl-2-butene) was used in the work. The catalytic process was carried out in a reactor with a fixed catalyst bed at 170 – 190 oC, and a pressure of 1.1 – 2.5 MPa. Analysis of obtained products was provided by gas-chromatography (Agilent 7820A) and 13C NMR (Bruker Avance 400) methods. It is shown that the hydrogenation of olefins with conversion of the C`5 fraction such high as 98 – 99 % can be carried out in the vapor phase over CuO-ZnO-Al2O3 and CuO-ZnO-Al2O3 catalysts at the temperature of 180 oC and pressure 1.2 – 1.5 MPa. The total C5 olefinsloading can reach 15 – 23 mmol/gcat/h. The residual content of unsaturated hydrocarbons is 1 %. At the pressure of 2.5 MPa, a sharp decrease in conversion is observed, as n-pentane turns into a liquid phase. Catalyst deactivation was not observed for 36 hours. Under the same conditions the drop in activity of industrial catalyst 0.35 % Pd/Al2O3 was observed after 70 minutes from the start of work.","PeriodicalId":9649,"journal":{"name":"Catalysis and Petrochemistry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogenation of C`'5 olefins in vapor phase on the copper oxide catalyst\",\"authors\":\"M. Sharanda, A. Mylin, O. Zinchenko, V. Brei\",\"doi\":\"10.15407/kataliz2021.32.093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogenation of unsaturated hydrocarbons is one of the important processes of the modern petrochemical industry. Quite large amount of C4-5 fractions of hydrocarbons containing paraffins and olefins are formed via pyrolysis of light petroleum products. To increase the production of ethylene and propylene, the separated C4-5 fractions are recycled for pyrolysis. Preliminary hydrogenation of olefin compounds in these fractions is necessary. Preferably, the hydrogenation is carried out in the liquid phase at temperatures of 40 – 80 °C under hydrogen pressure up to 15 bar overhigh-cost palladium-containing catalysts. The aim of this work was to elucidate the possibility of efficient hydrogenation of industrial С5 fraction containing C`5 olefins over some mixed copper-oxide catalysts. Hydrogenation of C`5 fraction of pyrolysis of light petroleum products in the vapor phase over such catalysts as CuO-ZnO-ZrO2-Al2O3 and CuO-ZnOAl2O3 in comparison with commercial Pd/Al2O3 catalyst for C4-5 olefins hydrogenation have been studied. The pyrolysis C`5 fraction containing 51 wt. % of unsaturated hydrocarbons (2-methyl-1-butene, 2-pentene, cis-2-pentene, trans-2-pentene, 2-methyl-2-butene) was used in the work. The catalytic process was carried out in a reactor with a fixed catalyst bed at 170 – 190 oC, and a pressure of 1.1 – 2.5 MPa. Analysis of obtained products was provided by gas-chromatography (Agilent 7820A) and 13C NMR (Bruker Avance 400) methods. It is shown that the hydrogenation of olefins with conversion of the C`5 fraction such high as 98 – 99 % can be carried out in the vapor phase over CuO-ZnO-Al2O3 and CuO-ZnO-Al2O3 catalysts at the temperature of 180 oC and pressure 1.2 – 1.5 MPa. The total C5 olefinsloading can reach 15 – 23 mmol/gcat/h. The residual content of unsaturated hydrocarbons is 1 %. At the pressure of 2.5 MPa, a sharp decrease in conversion is observed, as n-pentane turns into a liquid phase. Catalyst deactivation was not observed for 36 hours. Under the same conditions the drop in activity of industrial catalyst 0.35 % Pd/Al2O3 was observed after 70 minutes from the start of work.\",\"PeriodicalId\":9649,\"journal\":{\"name\":\"Catalysis and Petrochemistry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis and Petrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/kataliz2021.32.093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis and Petrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/kataliz2021.32.093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrogenation of C`'5 olefins in vapor phase on the copper oxide catalyst
Hydrogenation of unsaturated hydrocarbons is one of the important processes of the modern petrochemical industry. Quite large amount of C4-5 fractions of hydrocarbons containing paraffins and olefins are formed via pyrolysis of light petroleum products. To increase the production of ethylene and propylene, the separated C4-5 fractions are recycled for pyrolysis. Preliminary hydrogenation of olefin compounds in these fractions is necessary. Preferably, the hydrogenation is carried out in the liquid phase at temperatures of 40 – 80 °C under hydrogen pressure up to 15 bar overhigh-cost palladium-containing catalysts. The aim of this work was to elucidate the possibility of efficient hydrogenation of industrial С5 fraction containing C`5 olefins over some mixed copper-oxide catalysts. Hydrogenation of C`5 fraction of pyrolysis of light petroleum products in the vapor phase over such catalysts as CuO-ZnO-ZrO2-Al2O3 and CuO-ZnOAl2O3 in comparison with commercial Pd/Al2O3 catalyst for C4-5 olefins hydrogenation have been studied. The pyrolysis C`5 fraction containing 51 wt. % of unsaturated hydrocarbons (2-methyl-1-butene, 2-pentene, cis-2-pentene, trans-2-pentene, 2-methyl-2-butene) was used in the work. The catalytic process was carried out in a reactor with a fixed catalyst bed at 170 – 190 oC, and a pressure of 1.1 – 2.5 MPa. Analysis of obtained products was provided by gas-chromatography (Agilent 7820A) and 13C NMR (Bruker Avance 400) methods. It is shown that the hydrogenation of olefins with conversion of the C`5 fraction such high as 98 – 99 % can be carried out in the vapor phase over CuO-ZnO-Al2O3 and CuO-ZnO-Al2O3 catalysts at the temperature of 180 oC and pressure 1.2 – 1.5 MPa. The total C5 olefinsloading can reach 15 – 23 mmol/gcat/h. The residual content of unsaturated hydrocarbons is 1 %. At the pressure of 2.5 MPa, a sharp decrease in conversion is observed, as n-pentane turns into a liquid phase. Catalyst deactivation was not observed for 36 hours. Under the same conditions the drop in activity of industrial catalyst 0.35 % Pd/Al2O3 was observed after 70 minutes from the start of work.