实数编码自适应遗传算法在6R机器人PID参数优化中的应用

Yuan-Ming Ding, Xuan-yin Wang
{"title":"实数编码自适应遗传算法在6R机器人PID参数优化中的应用","authors":"Yuan-Ming Ding, Xuan-yin Wang","doi":"10.1109/ICNC.2008.82","DOIUrl":null,"url":null,"abstract":"A new matching crossover real-code adaptive genetic algorithm base on the population maturity is presented to optimize the parameters of a PID controller. The individual is coded in real number, and its crossover probability varies according to the individual fitness and the population maturity in course of evolution. New individuals generated by the crossover between individuals with the best fitness and the second best fitness are added into the population to decrease the search size of the real-coded genetic algorithm. To a certain extent, this algorithm can improve the crossover efficiency of the real-coded adaptive genetic algorithm, solve the premature problem and generate new preponderant individuals much more efficiently. The experiments on the PID parameter optimization of a 6 R series arc welding manipulators demonstrate that this algorithm can enhance the performance of searching global optimum and keep the population diversity at a high level at the same time. The optimization result of this algorithm is better than the one of the others.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"23 1","pages":"635-639"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Real-Coded Adaptive Genetic Algorithm Applied to PID Parameter Optimization on a 6R Manipulators\",\"authors\":\"Yuan-Ming Ding, Xuan-yin Wang\",\"doi\":\"10.1109/ICNC.2008.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new matching crossover real-code adaptive genetic algorithm base on the population maturity is presented to optimize the parameters of a PID controller. The individual is coded in real number, and its crossover probability varies according to the individual fitness and the population maturity in course of evolution. New individuals generated by the crossover between individuals with the best fitness and the second best fitness are added into the population to decrease the search size of the real-coded genetic algorithm. To a certain extent, this algorithm can improve the crossover efficiency of the real-coded adaptive genetic algorithm, solve the premature problem and generate new preponderant individuals much more efficiently. The experiments on the PID parameter optimization of a 6 R series arc welding manipulators demonstrate that this algorithm can enhance the performance of searching global optimum and keep the population diversity at a high level at the same time. The optimization result of this algorithm is better than the one of the others.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"23 1\",\"pages\":\"635-639\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于种群成熟度的匹配交叉实码自适应遗传算法来优化PID控制器的参数。个体采用实数编码,其交叉概率随个体适应度和种群成熟度在进化过程中的变化而变化。将最优适应度与次优适应度的个体交叉产生的新个体加入到种群中,减小了实编码遗传算法的搜索规模。该算法在一定程度上提高了实编码自适应遗传算法的交叉效率,更有效地解决了早熟问题,生成了新的优势个体。对6r系列弧焊机械手的PID参数优化实验表明,该算法在提高全局寻优性能的同时,保持了较高的种群多样性。该算法的优化结果优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Coded Adaptive Genetic Algorithm Applied to PID Parameter Optimization on a 6R Manipulators
A new matching crossover real-code adaptive genetic algorithm base on the population maturity is presented to optimize the parameters of a PID controller. The individual is coded in real number, and its crossover probability varies according to the individual fitness and the population maturity in course of evolution. New individuals generated by the crossover between individuals with the best fitness and the second best fitness are added into the population to decrease the search size of the real-coded genetic algorithm. To a certain extent, this algorithm can improve the crossover efficiency of the real-coded adaptive genetic algorithm, solve the premature problem and generate new preponderant individuals much more efficiently. The experiments on the PID parameter optimization of a 6 R series arc welding manipulators demonstrate that this algorithm can enhance the performance of searching global optimum and keep the population diversity at a high level at the same time. The optimization result of this algorithm is better than the one of the others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Level Content-Based Endoscope Image Retrieval A New PSO Scheduling Simulation Algorithm Based on an Intelligent Compensation Particle Position Rounding off Genetic Algorithm with an Application to Complex Portfolio Selection Some Operations of L-Fuzzy Approximate Spaces On Residuated Lattices Image Edge Detection Based on Improved Local Fractal Dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1