{"title":"基于空间高效量子奇异值变换的空间有界量子态测试","authors":"Franccois Le Gall, Yupan Liu, Qisheng Wang","doi":"10.48550/arXiv.2308.05079","DOIUrl":null,"url":null,"abstract":"Driven by exploring the power of quantum computation with a limited number of qubits, we present a novel complete characterization for space-bounded quantum computation, which encompasses settings with one-sided error (unitary coRQL) and two-sided error (BQL), approached from a quantum state testing perspective: - The first family of natural complete problems for unitary coRQL, i.e., space-bounded quantum state certification for trace distance and Hilbert-Schmidt distance; - A new family of natural complete problems for BQL, i.e., space-bounded quantum state testing for trace distance, Hilbert-Schmidt distance, and quantum entropy difference. In the space-bounded quantum state testing problem, we consider two logarithmic-qubit quantum circuits (devices) denoted as $Q_0$ and $Q_1$, which prepare quantum states $\\rho_0$ and $\\rho_1$, respectively, with access to their ``source code''. Our goal is to decide whether $\\rho_0$ is $\\epsilon_1$-close to or $\\epsilon_2$-far from $\\rho_1$ with respect to a specified distance-like measure. Interestingly, unlike time-bounded state testing problems, which exhibit computational hardness depending on the chosen distance-like measure (either QSZK-complete or BQP-complete), our results reveal that the space-bounded state testing problems, considering all three measures, are computationally as easy as preparing quantum states. Our results primarily build upon a space-efficient variant of the quantum singular value transformation (QSVT) introduced by Gily\\'en, Su, Low, and Wiebe (STOC 2019), which is of independent interest. Our technique provides a unified approach for designing space-bounded quantum algorithms. Specifically, we show that implementing QSVT for any bounded polynomial that approximates a piecewise-smooth function incurs only a constant overhead in terms of the space required for special forms of the projected unitary encoding.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Space-bounded quantum state testing via space-efficient quantum singular value transformation\",\"authors\":\"Franccois Le Gall, Yupan Liu, Qisheng Wang\",\"doi\":\"10.48550/arXiv.2308.05079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by exploring the power of quantum computation with a limited number of qubits, we present a novel complete characterization for space-bounded quantum computation, which encompasses settings with one-sided error (unitary coRQL) and two-sided error (BQL), approached from a quantum state testing perspective: - The first family of natural complete problems for unitary coRQL, i.e., space-bounded quantum state certification for trace distance and Hilbert-Schmidt distance; - A new family of natural complete problems for BQL, i.e., space-bounded quantum state testing for trace distance, Hilbert-Schmidt distance, and quantum entropy difference. In the space-bounded quantum state testing problem, we consider two logarithmic-qubit quantum circuits (devices) denoted as $Q_0$ and $Q_1$, which prepare quantum states $\\\\rho_0$ and $\\\\rho_1$, respectively, with access to their ``source code''. Our goal is to decide whether $\\\\rho_0$ is $\\\\epsilon_1$-close to or $\\\\epsilon_2$-far from $\\\\rho_1$ with respect to a specified distance-like measure. Interestingly, unlike time-bounded state testing problems, which exhibit computational hardness depending on the chosen distance-like measure (either QSZK-complete or BQP-complete), our results reveal that the space-bounded state testing problems, considering all three measures, are computationally as easy as preparing quantum states. Our results primarily build upon a space-efficient variant of the quantum singular value transformation (QSVT) introduced by Gily\\\\'en, Su, Low, and Wiebe (STOC 2019), which is of independent interest. Our technique provides a unified approach for designing space-bounded quantum algorithms. Specifically, we show that implementing QSVT for any bounded polynomial that approximates a piecewise-smooth function incurs only a constant overhead in terms of the space required for special forms of the projected unitary encoding.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2308.05079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.05079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Space-bounded quantum state testing via space-efficient quantum singular value transformation
Driven by exploring the power of quantum computation with a limited number of qubits, we present a novel complete characterization for space-bounded quantum computation, which encompasses settings with one-sided error (unitary coRQL) and two-sided error (BQL), approached from a quantum state testing perspective: - The first family of natural complete problems for unitary coRQL, i.e., space-bounded quantum state certification for trace distance and Hilbert-Schmidt distance; - A new family of natural complete problems for BQL, i.e., space-bounded quantum state testing for trace distance, Hilbert-Schmidt distance, and quantum entropy difference. In the space-bounded quantum state testing problem, we consider two logarithmic-qubit quantum circuits (devices) denoted as $Q_0$ and $Q_1$, which prepare quantum states $\rho_0$ and $\rho_1$, respectively, with access to their ``source code''. Our goal is to decide whether $\rho_0$ is $\epsilon_1$-close to or $\epsilon_2$-far from $\rho_1$ with respect to a specified distance-like measure. Interestingly, unlike time-bounded state testing problems, which exhibit computational hardness depending on the chosen distance-like measure (either QSZK-complete or BQP-complete), our results reveal that the space-bounded state testing problems, considering all three measures, are computationally as easy as preparing quantum states. Our results primarily build upon a space-efficient variant of the quantum singular value transformation (QSVT) introduced by Gily\'en, Su, Low, and Wiebe (STOC 2019), which is of independent interest. Our technique provides a unified approach for designing space-bounded quantum algorithms. Specifically, we show that implementing QSVT for any bounded polynomial that approximates a piecewise-smooth function incurs only a constant overhead in terms of the space required for special forms of the projected unitary encoding.