Femi Johnson, O. Adebukola, O. Ojo, Adejimi Alaba, Opakunle Victor
{"title":"基于神经模糊模型的任务绩效与适应度预测模型","authors":"Femi Johnson, O. Adebukola, O. Ojo, Adejimi Alaba, Opakunle Victor","doi":"10.47852/bonviewaia32021010","DOIUrl":null,"url":null,"abstract":"Recruiters' decisions in the selection of candidates for specific job roles are not only dependent on physical attributes and academic qualifications but also on the fitness of candidates for the specified tasks. In this paper, we propose and develop a simple neuro-fuzzy-based task performance and fitness model for the selection of candidates. This is accomplished by obtaining from Kaggle (an online database) samples of task performance-related data of employees in various firms. Data were preprocessed and divided into 60%, 20%, and 20% for training, validating, and testing the developed neuro-fuzzy-based task performance model respectively. The most significant factors influencing the performance and fitness rating of workers were selected from the database using the Principal Components Analysis (PCA) ranking technique. The effectiveness of the proposed model was assessed, and discovered to generate an accuracy of 0.997%, 0.08% Root Mean Square Error (RMSE), and 0.042% Mean Absolute Error (MAE).","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Task Performance and Fitness Predictive Model Based on Neuro-Fuzzy Modeling\",\"authors\":\"Femi Johnson, O. Adebukola, O. Ojo, Adejimi Alaba, Opakunle Victor\",\"doi\":\"10.47852/bonviewaia32021010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recruiters' decisions in the selection of candidates for specific job roles are not only dependent on physical attributes and academic qualifications but also on the fitness of candidates for the specified tasks. In this paper, we propose and develop a simple neuro-fuzzy-based task performance and fitness model for the selection of candidates. This is accomplished by obtaining from Kaggle (an online database) samples of task performance-related data of employees in various firms. Data were preprocessed and divided into 60%, 20%, and 20% for training, validating, and testing the developed neuro-fuzzy-based task performance model respectively. The most significant factors influencing the performance and fitness rating of workers were selected from the database using the Principal Components Analysis (PCA) ranking technique. The effectiveness of the proposed model was assessed, and discovered to generate an accuracy of 0.997%, 0.08% Root Mean Square Error (RMSE), and 0.042% Mean Absolute Error (MAE).\",\"PeriodicalId\":91205,\"journal\":{\"name\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47852/bonviewaia32021010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47852/bonviewaia32021010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Task Performance and Fitness Predictive Model Based on Neuro-Fuzzy Modeling
Recruiters' decisions in the selection of candidates for specific job roles are not only dependent on physical attributes and academic qualifications but also on the fitness of candidates for the specified tasks. In this paper, we propose and develop a simple neuro-fuzzy-based task performance and fitness model for the selection of candidates. This is accomplished by obtaining from Kaggle (an online database) samples of task performance-related data of employees in various firms. Data were preprocessed and divided into 60%, 20%, and 20% for training, validating, and testing the developed neuro-fuzzy-based task performance model respectively. The most significant factors influencing the performance and fitness rating of workers were selected from the database using the Principal Components Analysis (PCA) ranking technique. The effectiveness of the proposed model was assessed, and discovered to generate an accuracy of 0.997%, 0.08% Root Mean Square Error (RMSE), and 0.042% Mean Absolute Error (MAE).