{"title":"通过鲁棒起始聚合实现更好的心跳跟踪","authors":"Brian McFee, D. Ellis","doi":"10.1109/ICASSP.2014.6853980","DOIUrl":null,"url":null,"abstract":"Onset detection forms the critical first stage of most beat tracking algorithms. While common spectral-difference onset detectors can work well in genres with clear rhythmic structure, they can be sensitive to loud, asynchronous events (e.g., off-beat notes in a jazz solo), which limits their general efficacy. In this paper, we investigate methods to improve the robustness of onset detection for beat tracking. Experimental results indicate that simple modifications to onset detection can produce large improvements in beat tracking accuracy.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"41 1","pages":"2154-2158"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Better beat tracking through robust onset aggregation\",\"authors\":\"Brian McFee, D. Ellis\",\"doi\":\"10.1109/ICASSP.2014.6853980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Onset detection forms the critical first stage of most beat tracking algorithms. While common spectral-difference onset detectors can work well in genres with clear rhythmic structure, they can be sensitive to loud, asynchronous events (e.g., off-beat notes in a jazz solo), which limits their general efficacy. In this paper, we investigate methods to improve the robustness of onset detection for beat tracking. Experimental results indicate that simple modifications to onset detection can produce large improvements in beat tracking accuracy.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"41 1\",\"pages\":\"2154-2158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6853980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6853980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Better beat tracking through robust onset aggregation
Onset detection forms the critical first stage of most beat tracking algorithms. While common spectral-difference onset detectors can work well in genres with clear rhythmic structure, they can be sensitive to loud, asynchronous events (e.g., off-beat notes in a jazz solo), which limits their general efficacy. In this paper, we investigate methods to improve the robustness of onset detection for beat tracking. Experimental results indicate that simple modifications to onset detection can produce large improvements in beat tracking accuracy.