载波频偏毫米波MIMO信道的张量估计

Lucas N. Ribeiro, A. Almeida, Nitin Jonathan Myers, R. Heath
{"title":"载波频偏毫米波MIMO信道的张量估计","authors":"Lucas N. Ribeiro, A. Almeida, Nitin Jonathan Myers, R. Heath","doi":"10.1109/ICASSP.2019.8683496","DOIUrl":null,"url":null,"abstract":"Millimeter wave multiple-input-multiple-output (MIMO) achieves the best performance when reliable channel state information is used to design the beams. Most channel estimation methods proposed in the literature, however, ignore practical hardware impairments such as carrier frequency offset (CFO) and may fail under such impairment. In this paper, we present a joint CFO and channel estimation method based on tensor modeling and compressed sensing. Simulation results indicate that the proposed method yields better channel recovery performance than the benchmark and that it is more robust to a small number of channel measurements.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"4155-4159"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Tensor-based Estimation of mmWave MIMO Channels with Carrier Frequency Offset\",\"authors\":\"Lucas N. Ribeiro, A. Almeida, Nitin Jonathan Myers, R. Heath\",\"doi\":\"10.1109/ICASSP.2019.8683496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter wave multiple-input-multiple-output (MIMO) achieves the best performance when reliable channel state information is used to design the beams. Most channel estimation methods proposed in the literature, however, ignore practical hardware impairments such as carrier frequency offset (CFO) and may fail under such impairment. In this paper, we present a joint CFO and channel estimation method based on tensor modeling and compressed sensing. Simulation results indicate that the proposed method yields better channel recovery performance than the benchmark and that it is more robust to a small number of channel measurements.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"4155-4159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

采用可靠的信道状态信息来设计毫米波波束时,MIMO的性能达到最佳。然而,文献中提出的大多数信道估计方法都忽略了实际的硬件损伤,例如载波频率偏移(CFO),并且可能在这种损伤下失败。本文提出了一种基于张量建模和压缩感知的联合CFO和信道估计方法。仿真结果表明,该方法比基准方法具有更好的信道恢复性能,并且对少量信道测量具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensor-based Estimation of mmWave MIMO Channels with Carrier Frequency Offset
Millimeter wave multiple-input-multiple-output (MIMO) achieves the best performance when reliable channel state information is used to design the beams. Most channel estimation methods proposed in the literature, however, ignore practical hardware impairments such as carrier frequency offset (CFO) and may fail under such impairment. In this paper, we present a joint CFO and channel estimation method based on tensor modeling and compressed sensing. Simulation results indicate that the proposed method yields better channel recovery performance than the benchmark and that it is more robust to a small number of channel measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1