Peilin Cheng, Yuze Ye, B. Yan, Yebo Lu, Chuanyu Wu
{"title":"一种基于弹簧增强软气动执行器的增强夹持适应性的新型软夹持器","authors":"Peilin Cheng, Yuze Ye, B. Yan, Yebo Lu, Chuanyu Wu","doi":"10.1108/ir-04-2022-0103","DOIUrl":null,"url":null,"abstract":"\nPurpose\nSoft grippers have safer and more adaptable human–machine and environment–machine interactions than rigid grippers. However, most soft grippers with single gripping postures have a limited gripping range. Therefore, this paper aims to design a soft gripper with variable gripping posture to enhance the gripping adaptability.\n\n\nDesign/methodology/approach\nThis paper proposes a novel soft gripper consisting of a conversion mechanism and four spring-reinforced soft pneumatic actuators (SSPAs) as soft fingers. By adjusting the conversion mechanism, four gripping postures can be achieved to grip objects of different shapes, sizes and weights. Furthermore, a quasi-static model is established to predict the bending deformation of the finger. Finally, the bending angle of the finger is measured to validate the accuracy of the quasi-static model. The gripping force and gripping adaptability are tested to explore the gripping performance of the gripper.\n\n\nFindings\nThrough experiments, the results have shown that the quasi-static model can accurately predict the deformation of the finger; the gripper has the most significant gripping force under the parallel posture, and the gripping adaptability of the gripper is highly enhanced by converting the four gripping postures.\n\n\nOriginality/value\nBy increasing the gripping posture, a novel soft gripper with enhanced gripping adaptability is proposed to enlarge the gripping range of the soft gripper with a single posture. Furthermore, a quasi-static model is established to analyze the deformation of SSPA.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel soft gripper with enhanced gripping adaptability based on spring-reinforced soft pneumatic actuators\",\"authors\":\"Peilin Cheng, Yuze Ye, B. Yan, Yebo Lu, Chuanyu Wu\",\"doi\":\"10.1108/ir-04-2022-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nSoft grippers have safer and more adaptable human–machine and environment–machine interactions than rigid grippers. However, most soft grippers with single gripping postures have a limited gripping range. Therefore, this paper aims to design a soft gripper with variable gripping posture to enhance the gripping adaptability.\\n\\n\\nDesign/methodology/approach\\nThis paper proposes a novel soft gripper consisting of a conversion mechanism and four spring-reinforced soft pneumatic actuators (SSPAs) as soft fingers. By adjusting the conversion mechanism, four gripping postures can be achieved to grip objects of different shapes, sizes and weights. Furthermore, a quasi-static model is established to predict the bending deformation of the finger. Finally, the bending angle of the finger is measured to validate the accuracy of the quasi-static model. The gripping force and gripping adaptability are tested to explore the gripping performance of the gripper.\\n\\n\\nFindings\\nThrough experiments, the results have shown that the quasi-static model can accurately predict the deformation of the finger; the gripper has the most significant gripping force under the parallel posture, and the gripping adaptability of the gripper is highly enhanced by converting the four gripping postures.\\n\\n\\nOriginality/value\\nBy increasing the gripping posture, a novel soft gripper with enhanced gripping adaptability is proposed to enlarge the gripping range of the soft gripper with a single posture. Furthermore, a quasi-static model is established to analyze the deformation of SSPA.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-04-2022-0103\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-04-2022-0103","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A novel soft gripper with enhanced gripping adaptability based on spring-reinforced soft pneumatic actuators
Purpose
Soft grippers have safer and more adaptable human–machine and environment–machine interactions than rigid grippers. However, most soft grippers with single gripping postures have a limited gripping range. Therefore, this paper aims to design a soft gripper with variable gripping posture to enhance the gripping adaptability.
Design/methodology/approach
This paper proposes a novel soft gripper consisting of a conversion mechanism and four spring-reinforced soft pneumatic actuators (SSPAs) as soft fingers. By adjusting the conversion mechanism, four gripping postures can be achieved to grip objects of different shapes, sizes and weights. Furthermore, a quasi-static model is established to predict the bending deformation of the finger. Finally, the bending angle of the finger is measured to validate the accuracy of the quasi-static model. The gripping force and gripping adaptability are tested to explore the gripping performance of the gripper.
Findings
Through experiments, the results have shown that the quasi-static model can accurately predict the deformation of the finger; the gripper has the most significant gripping force under the parallel posture, and the gripping adaptability of the gripper is highly enhanced by converting the four gripping postures.
Originality/value
By increasing the gripping posture, a novel soft gripper with enhanced gripping adaptability is proposed to enlarge the gripping range of the soft gripper with a single posture. Furthermore, a quasi-static model is established to analyze the deformation of SSPA.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.