根据法规(EC) No 1829/2003(申请EFSA/GMO/UK/2005/25)对用于食品和饲料、进口和加工的耐草铵膦转基因油菜T45的环境风险评估

A. Andreassen, P. Brandtzaeg, M. Finne, A. Holck, A. Jevnaker, O. Junttila, Heidi Sjursen Konestabo, R. Meadow, A. Mikalsen, K. Nielsen, M. Sanden, V. Sipinen, H. Opsahl-Sorteberg, R. Vikse
{"title":"根据法规(EC) No 1829/2003(申请EFSA/GMO/UK/2005/25)对用于食品和饲料、进口和加工的耐草铵膦转基因油菜T45的环境风险评估","authors":"A. Andreassen, P. Brandtzaeg, M. Finne, A. Holck, A. Jevnaker, O. Junttila, Heidi Sjursen Konestabo, R. Meadow, A. Mikalsen, K. Nielsen, M. Sanden, V. Sipinen, H. Opsahl-Sorteberg, R. Vikse","doi":"10.9734/ejnfs/2019/v11i230140","DOIUrl":null,"url":null,"abstract":"In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Directorate for Nature Management to conduct final environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The assignment includes a scientific environmental risk assessment of oilseed rape T45 (Reference EFSA/GMO/UK/2005/25) from Bayer CropScience for food and feed uses, import and processing. Oilseed rape T45 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority related to the EFSAs public hearing in 2007 (VKM 2007a). \nFood additives produced from T45 oilseed rape were notified in the EU as existing food additives within the meaning of Article 8 (1)(b) of Regulation 1829/2003, authorized under Directive 89/10/EEC (Community Register 2005). Feed materials produced from T45 were also notified as existing feed products containing, consisting of or produced from T45 according to Articles 8 and 20 of Regulation (EC) No 1829/2003 in 2003.   \nA notification for placing on the market of T45 according to the Directive 2001/18/EC was submitted in March 2004 (C/GB/04/M5/4), covering import and processing of T45 into food and feed. The application was further transferred into Regulation (EC) No 1829/2003 in November 2005 (EFSA/GMO/UK/2005/25). An application for renewal of authorisation for continued marketing of food additives and feed materials produced from T45 oilseed rape was submitted under Regulation (EC) No 1829/2003 in 2007 (EFSA/GMO/RX/T45). The EFSA GMO Panel performed one single comprehensive risk assessment for all intended uses of genetically modified oilseed rape T45, and issued a comprehensive scientific opinion for both applications submitted under Regulation (EC) No 1829/2003. The scientific opinion was published in January 30 2008 (EFSA 2008), and food and feed products containing or produced from oilseed rape T45 was approved by Commission Decision 26 March 2009 (Commission Decision 2009/184/EC).  \nThe oilseed rape T45 is however currently being phased out (EU-COM 2009). The commercialisation of T45 oilseed rape seeds in third countries was stopped after the 2005 planting season and stocks of all oilseed rape T45 lines have been recalled from distribution and destroyed. The applicant commits not to commercialize the event in the future and the import will therefore be restricted to adventitious levels in oilseed rape commodity. Thus the incidence of oilseed rape T45 in the EU is expected to be limited. \nThe environmental risk assessment of the oilseed rape T45 is based on information provided by the notifier in the application EFSA/GMO/UK/2005/25 and EFSA/GMO/RX/T45, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.   \nThe VKM GMO Panel has evaluated T45 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2006, 2011a), the environmental risk assessment of GM plants (EFSA 2010), the selection of comparators for the risk assessment of GM plants (EFSA 2011b), and for the post-market environmental monitoring of GM plants (EFSA 2006, 2011c).  \nThe scientific risk assessment of oilseed rape T45 include molecular characterisation of the inserted DNA and expression of target proteins, comparative assessment of agronomic and phenotypic characteristics, unintended effects on plant fitness, potential for horizontal and vertical gene transfer, and evaluations of the post-market environmental plan. \nIn line with its mandate, VKM emphasised that assessments of sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act, shall not be carried out by the Panel on Genetically Modified Organisms.  \nThe glufosinate ammonium-tolerant oilseed rape transformation event T45 (Unique Identfier ACSBNØØ8-2) was developed by Agrobacterium-mediated transformation of protoplast from the conventional oilseed rape cultivar “AC Excel”. T45 contains a synthetic version of the native pat gene isolated from the bacteria Streptomyces viridochromogenes, strain Tü 494. The inserted gene encodes the enzyme phosphinothricin acetyltransferase (PAT), which confers tolerance to the herbical active substance glufosinate ammonium. The PAT enzyme detoxifies glufosinate-ammonium by acetylation of the L-isomer into N-acetyl-L-glufosinate ammonium (NAG) which does not inhibit glutamine synthetase and therefore confers tolerance to the herbicide. \nGlufosinate ammonium-tolerant oilseed rape transformation event T45 has been conventionally bred into an array of spring-type oilseed rape varieties. \nMolecular characterization: \nThe molecular characterisation data established that only one copy of the gene cassette is integrated in the oilseed rape genomic DNA. Appropriate analysis of the integration site including sequence determination of the inserted DNA and flanking regions and bioinformatics analysis have been performed. Bioinformatics analyses of junction regions demonstrated the absence of any potential new ORFs coding for known toxins or allergens. The genetic stability of transformation event T45 was demonstrated at the genomic level over multiple generations by Southern analysis. Segregation analysis shows that event T45 is inherited as dominant, single locus trait. Phenotypic stability has been confirmed by stable tolerance to the herbicide for T45 lines and varieties derived from the event grown in Canada since 1993.  \nOilseed rape transformation event T45 and the physical, chemical and functional characteristics of the proteins have previously been evaluated by The VKM Panel on Genetically Modified Organisms, and considered satisfactory (VKM 2007a). \nComparative assessment: \nBased on results from comparative analyses of data from field trials located at representative sites and environments in Canada in 1995-1997, it is concluded that oilseed rape T45 is agronomically and phenotypically equivalent to the conventional counterpart and commercial available reference varieties, with the exception of maturity and the herbicide tolerance conferred by the PAT protein.  The field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of event T45 compared to conventional oilseed rape. Furthermore, the results demonstrate that in-crop applications of glufosinate herbicide do not alter the phenotypic and agronomic characteristics of event T45 compared to conventional oilseed rape. \nEnvironmental risk: \nAccording to the applicant, the event T45 has been phased out, and stocks of all oilseed rape T45 lines have been recalled from distribution and destroyed since 2005. However, since future cultivation and import of oilseed rape T45 into the EU/EEA area cannot be entirely ruled out, the environmental risk assessment consider exposure of viable seeds of T45 through accidental spillage into the environment during transportation, storage, handling, processing and use of derived products. \nOilseed rape is mainly a self-pollinating species, but has entomophilous flowers capable of both self- and cross-pollinating. Normally the level of outcrossing is about 30%, but outcrossing frequencies up to 55% are reported.  \nSeveral plant species related to oilseed rape that are either cultivated, occurs as weeds of cultivated and disturbed lands, or grow outside cultivation areas to which gene introgression from oilseed rape could be of concern. These are found both in the Brassica species complex and in related genera. A series of controlled crosses between oilseed rape and related taxa have been reported in the scientific literature. Because of a mismatch in the chromosome numbers most hybrids have a severely reduced fertility. Exceptions are hybrids obtained from crosses between oilseed rape and wild turnip (B. rapa ssp. campestris) and to a lesser extent, mustard greens (B. juncea), where spontaneously hybridising and transgene introgression under field conditions have been confirmed. Wild turnip is native to Norway and a common weed in arable lowlands. \nThere is no evidence that the herbicide tolerant trait results in enhanced fitness, persistence or invasiveness of oilseed rape T45, or hybridizing wild relatives, compared to conventional oilseed rape varieties, unless the plants are exposed to herbicides with the active substance glufosinate ammonium. Glufosinate ammonium-containing herbicides have been withdrawn from the Norwegian market since 2008, and the substance will be phased out in the EU in 2017 for reasons of reproductive toxicity. \nAccidental spillage and loss of viable seeds of T45 during transport, storage, handling in the environment and processing into derived products is, however, likely to take place over time, and the establishment of small populations of oilseed rape T45 cannot be excluded. Feral oilseed rape T45 arising from spilled seed could theoretically pollinate conventional crop plants if the escaped populatio","PeriodicalId":11994,"journal":{"name":"European Journal of Nutrition & Food Safety","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental Risk Assessment of Glufosinate-Tolerant Genetically Modified Oilseed Rape T45 for Food and Feed Uses, Import and Processing under Regulation (EC) No 1829/2003 (Application EFSA/GMO/UK/2005/25)\",\"authors\":\"A. Andreassen, P. Brandtzaeg, M. Finne, A. Holck, A. Jevnaker, O. Junttila, Heidi Sjursen Konestabo, R. Meadow, A. Mikalsen, K. Nielsen, M. Sanden, V. Sipinen, H. Opsahl-Sorteberg, R. Vikse\",\"doi\":\"10.9734/ejnfs/2019/v11i230140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Directorate for Nature Management to conduct final environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The assignment includes a scientific environmental risk assessment of oilseed rape T45 (Reference EFSA/GMO/UK/2005/25) from Bayer CropScience for food and feed uses, import and processing. Oilseed rape T45 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority related to the EFSAs public hearing in 2007 (VKM 2007a). \\nFood additives produced from T45 oilseed rape were notified in the EU as existing food additives within the meaning of Article 8 (1)(b) of Regulation 1829/2003, authorized under Directive 89/10/EEC (Community Register 2005). Feed materials produced from T45 were also notified as existing feed products containing, consisting of or produced from T45 according to Articles 8 and 20 of Regulation (EC) No 1829/2003 in 2003.   \\nA notification for placing on the market of T45 according to the Directive 2001/18/EC was submitted in March 2004 (C/GB/04/M5/4), covering import and processing of T45 into food and feed. The application was further transferred into Regulation (EC) No 1829/2003 in November 2005 (EFSA/GMO/UK/2005/25). An application for renewal of authorisation for continued marketing of food additives and feed materials produced from T45 oilseed rape was submitted under Regulation (EC) No 1829/2003 in 2007 (EFSA/GMO/RX/T45). The EFSA GMO Panel performed one single comprehensive risk assessment for all intended uses of genetically modified oilseed rape T45, and issued a comprehensive scientific opinion for both applications submitted under Regulation (EC) No 1829/2003. The scientific opinion was published in January 30 2008 (EFSA 2008), and food and feed products containing or produced from oilseed rape T45 was approved by Commission Decision 26 March 2009 (Commission Decision 2009/184/EC).  \\nThe oilseed rape T45 is however currently being phased out (EU-COM 2009). The commercialisation of T45 oilseed rape seeds in third countries was stopped after the 2005 planting season and stocks of all oilseed rape T45 lines have been recalled from distribution and destroyed. The applicant commits not to commercialize the event in the future and the import will therefore be restricted to adventitious levels in oilseed rape commodity. Thus the incidence of oilseed rape T45 in the EU is expected to be limited. \\nThe environmental risk assessment of the oilseed rape T45 is based on information provided by the notifier in the application EFSA/GMO/UK/2005/25 and EFSA/GMO/RX/T45, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.   \\nThe VKM GMO Panel has evaluated T45 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2006, 2011a), the environmental risk assessment of GM plants (EFSA 2010), the selection of comparators for the risk assessment of GM plants (EFSA 2011b), and for the post-market environmental monitoring of GM plants (EFSA 2006, 2011c).  \\nThe scientific risk assessment of oilseed rape T45 include molecular characterisation of the inserted DNA and expression of target proteins, comparative assessment of agronomic and phenotypic characteristics, unintended effects on plant fitness, potential for horizontal and vertical gene transfer, and evaluations of the post-market environmental plan. \\nIn line with its mandate, VKM emphasised that assessments of sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act, shall not be carried out by the Panel on Genetically Modified Organisms.  \\nThe glufosinate ammonium-tolerant oilseed rape transformation event T45 (Unique Identfier ACSBNØØ8-2) was developed by Agrobacterium-mediated transformation of protoplast from the conventional oilseed rape cultivar “AC Excel”. T45 contains a synthetic version of the native pat gene isolated from the bacteria Streptomyces viridochromogenes, strain Tü 494. The inserted gene encodes the enzyme phosphinothricin acetyltransferase (PAT), which confers tolerance to the herbical active substance glufosinate ammonium. The PAT enzyme detoxifies glufosinate-ammonium by acetylation of the L-isomer into N-acetyl-L-glufosinate ammonium (NAG) which does not inhibit glutamine synthetase and therefore confers tolerance to the herbicide. \\nGlufosinate ammonium-tolerant oilseed rape transformation event T45 has been conventionally bred into an array of spring-type oilseed rape varieties. \\nMolecular characterization: \\nThe molecular characterisation data established that only one copy of the gene cassette is integrated in the oilseed rape genomic DNA. Appropriate analysis of the integration site including sequence determination of the inserted DNA and flanking regions and bioinformatics analysis have been performed. Bioinformatics analyses of junction regions demonstrated the absence of any potential new ORFs coding for known toxins or allergens. The genetic stability of transformation event T45 was demonstrated at the genomic level over multiple generations by Southern analysis. Segregation analysis shows that event T45 is inherited as dominant, single locus trait. Phenotypic stability has been confirmed by stable tolerance to the herbicide for T45 lines and varieties derived from the event grown in Canada since 1993.  \\nOilseed rape transformation event T45 and the physical, chemical and functional characteristics of the proteins have previously been evaluated by The VKM Panel on Genetically Modified Organisms, and considered satisfactory (VKM 2007a). \\nComparative assessment: \\nBased on results from comparative analyses of data from field trials located at representative sites and environments in Canada in 1995-1997, it is concluded that oilseed rape T45 is agronomically and phenotypically equivalent to the conventional counterpart and commercial available reference varieties, with the exception of maturity and the herbicide tolerance conferred by the PAT protein.  The field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of event T45 compared to conventional oilseed rape. Furthermore, the results demonstrate that in-crop applications of glufosinate herbicide do not alter the phenotypic and agronomic characteristics of event T45 compared to conventional oilseed rape. \\nEnvironmental risk: \\nAccording to the applicant, the event T45 has been phased out, and stocks of all oilseed rape T45 lines have been recalled from distribution and destroyed since 2005. However, since future cultivation and import of oilseed rape T45 into the EU/EEA area cannot be entirely ruled out, the environmental risk assessment consider exposure of viable seeds of T45 through accidental spillage into the environment during transportation, storage, handling, processing and use of derived products. \\nOilseed rape is mainly a self-pollinating species, but has entomophilous flowers capable of both self- and cross-pollinating. Normally the level of outcrossing is about 30%, but outcrossing frequencies up to 55% are reported.  \\nSeveral plant species related to oilseed rape that are either cultivated, occurs as weeds of cultivated and disturbed lands, or grow outside cultivation areas to which gene introgression from oilseed rape could be of concern. These are found both in the Brassica species complex and in related genera. A series of controlled crosses between oilseed rape and related taxa have been reported in the scientific literature. Because of a mismatch in the chromosome numbers most hybrids have a severely reduced fertility. Exceptions are hybrids obtained from crosses between oilseed rape and wild turnip (B. rapa ssp. campestris) and to a lesser extent, mustard greens (B. juncea), where spontaneously hybridising and transgene introgression under field conditions have been confirmed. Wild turnip is native to Norway and a common weed in arable lowlands. \\nThere is no evidence that the herbicide tolerant trait results in enhanced fitness, persistence or invasiveness of oilseed rape T45, or hybridizing wild relatives, compared to conventional oilseed rape varieties, unless the plants are exposed to herbicides with the active substance glufosinate ammonium. Glufosinate ammonium-containing herbicides have been withdrawn from the Norwegian market since 2008, and the substance will be phased out in the EU in 2017 for reasons of reproductive toxicity. \\nAccidental spillage and loss of viable seeds of T45 during transport, storage, handling in the environment and processing into derived products is, however, likely to take place over time, and the establishment of small populations of oilseed rape T45 cannot be excluded. Feral oilseed rape T45 arising from spilled seed could theoretically pollinate conventional crop plants if the escaped populatio\",\"PeriodicalId\":11994,\"journal\":{\"name\":\"European Journal of Nutrition & Food Safety\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Nutrition & Food Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ejnfs/2019/v11i230140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nutrition & Food Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ejnfs/2019/v11i230140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了准备在法律上实施欧盟第1829/2003号法规,挪威自然管理局已要求挪威食品安全科学委员会(VKM)对欧盟根据第2001/18/EC号指令或第1829/2003/EC号法规授权的所有转基因生物(GMOs)和含有或由转基因生物组成的产品进行最后的环境风险评估。该任务包括拜耳作物科学公司对油菜籽T45(参考EFSA/GMO/UK/2005/25)进行科学的环境风险评估,用于食品和饲料用途、进口和加工。VKM转基因生物小组(GMO)此前已经对油菜T45进行了风险评估,该小组受挪威食品安全局委托,与2007年欧洲食品安全局的公开听证会有关(VKM 2007a)。根据指令89/10/EEC(共同体登记2005)授权,由T45油菜籽生产的食品添加剂在欧盟作为法规1829/2003第8 (1)(b)条意义上的现有食品添加剂进行通报。根据2003年法规(EC) No 1829/2003第8条和第20条,由T45生产的饲料材料也被通知为含有、由T45组成或由T45生产的现有饲料产品。2004年3月,根据指令2001/18/EC (C/GB/04/M5/4)提交了T45投放市场的通知,该通知涵盖了T45在食品和饲料中的进口和加工。该申请于2005年11月进一步转移到法规(EC) No 1829/2003 (EFSA/GMO/UK/2005/25)。2007年,根据法规(EC) No 1829/2003 (EFSA/GMO/RX/T45)提交了一份关于继续销售由T45油菜生产的食品添加剂和饲料材料的续期申请。欧洲食品安全局转基因生物小组对转基因油菜T45的所有预期用途进行了单一的全面风险评估,并对根据法规(EC) No 1829/2003提交的两项申请发表了全面的科学意见。该科学意见于2008年1月30日公布(EFSA 2008),委员会决定2009年3月26日批准了含有或由油菜T45制成的食品和饲料产品(委员会决定2009/184/EC)。然而,油菜T45目前正在逐步淘汰(EU-COM 2009)。2005年种植季后,T45油菜种子在第三国的商业化被停止,所有T45油菜品种的库存已从分销中召回并销毁。申请人承诺将来不会将该事件商业化,因此进口将被限制在油菜商品的未知水平。因此,油菜T45在欧盟的发病率预计是有限的。对油菜籽T45的环境风险评估是基于申请EFSA/GMO/UK/2005/25和EFSA/GMO/RX/T45中通报人提供的信息,以及欧洲食品安全局和其他成员国在欧洲食品安全局网站GMO Extranet上提供的科学评论。风险评估还考虑了其他同行评审的相关科学文献。VKM转基因生物专家组参照T45在欧洲经济区(EEA)的预期用途,根据《挪威食品法案》、《挪威基因技术法案》、《基因技术法案》、关于故意向环境释放转基因生物的指令2001/18/EC和转基因食品和饲料法规(EC) No 1829/2003中描述的原则,对T45进行了评估。挪威食品安全科学委员会还决定考虑欧洲食品安全局转基因植物及其衍生食品和饲料风险评估指南(EFSA 2006, 2011a)、转基因植物环境风险评估指南(EFSA 2010)、转基因植物风险评估比较指标的选择(EFSA 2011b)以及转基因植物上市后环境监测指南(EFSA 2006, 2011c)中所述的适当原则。油菜T45的科学风险评估包括插入DNA的分子特征和目标蛋白的表达,农艺和表型特征的比较评估,对植物适应性的意外影响,水平和垂直基因转移的潜力,以及上市后环境计划的评估。根据其授权,VKM强调,根据挪威基因技术法案和与基因技术法案相关的影响评估条例,可持续发展、社会效用和伦理考虑的评估不应由转基因生物小组进行。以普通油菜品种“AC Excel”原生质体为材料,通过农杆菌介导转化,获得了耐草铵膦油菜转化事件T45 (Unique identifier ACSBNØØ8-2)。 T45含有从病毒色链霉菌(Streptomyces viridochromogenes,菌株Tü 494)中分离的天然pat基因的合成版本。插入的基因编码磷酸钠丙氨酸乙酰转移酶(PAT),该酶对草甘膦铵具有耐受性。PAT酶通过将l-异构体乙酰化成n -乙酰- l-草铵解毒而不抑制谷氨酰胺合成酶,因此对除草剂具有耐受性。耐草铵膦油菜转化事件T45已被常规培育成一系列春型油菜品种。分子表征:分子表征数据表明,油菜基因组DNA中只有一个基因盒拷贝。对整合位点进行了适当的分析,包括插入DNA和侧翼区域的序列测定以及生物信息学分析。连接区域的生物信息学分析表明,没有任何潜在的新的orf编码已知毒素或过敏原。通过Southern分析,在基因组水平上证明了转化事件T45的遗传稳定性。分离分析表明,事件T45为显性单位点遗传性状。自1993年以来在加拿大种植的T45品系及其衍生品种对除草剂的稳定耐受性证实了表型稳定性。油菜转化事件T45和蛋白质的物理、化学和功能特性先前已由VKM转基因生物小组进行了评估,并认为令人满意(VKM 2007a)。比较评价:根据1995-1997年加拿大代表性地点和环境的田间试验数据的比较分析结果,得出结论:油菜T45在农艺和表型上与传统对应品种和商业可用参考品种相当,除了成熟度和PAT蛋白所带来的除草剂耐受性。田间评价支持这样一个结论,即与常规油菜相比,T45事件没有增加植物杂草/害虫潜力的表型变化。此外,结果表明,与常规油菜相比,草铵膦除草剂在作物中施用不会改变事件T45的表型和农艺性状。环境风险:据申请人称,T45事件已逐步淘汰,自2005年以来,所有T45系列油菜库存已从分销中召回并销毁。然而,由于不能完全排除未来种植和进口T45油菜籽进入欧盟/欧洲经济区的可能性,因此环境风险评估考虑了T45活籽在运输、储存、处理、加工和使用衍生产品过程中意外泄漏到环境中的风险。油菜主要是一种自花授粉的植物,但也有昆虫性的花,既能自花授粉,也能异花授粉。正常情况下异交率约为30%,但据报道异交率高达55%。与油菜有关的几种植物要么是栽培的,要么是在耕地和受干扰的土地上生长的杂草,要么是生长在可能引起油菜基因渗入的耕地之外。这些在芸苔属复合体和相关属中都有发现。科学文献报道了一系列油菜与相关分类群的控制杂交。由于染色体数目不匹配,大多数杂交种的生育能力严重降低。例外的是由油菜和野生萝卜(B. rapa ssp)杂交得到的杂种。在较小程度上,芥菜(B. juncea)已被证实在田间条件下自发杂交和转基因渗入。野生萝卜原产于挪威,是可耕地低地的一种常见杂草。没有证据表明,与传统的油菜品种相比,耐除草剂性状导致油菜T45或杂交野生近缘品种的适应性、持久性或入侵性增强,除非这些植物暴露于含有活性物质草铵膦的除草剂中。自2008年以来,含草铵膦除草剂已从挪威市场撤出,由于生殖毒性,该物质将于2017年在欧盟逐步淘汰。然而,随着时间的推移,在运输、储存、环境处理和加工成衍生产品过程中,可能会发生T45活籽的意外泄漏和损失,不能排除油菜T45小种群的建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental Risk Assessment of Glufosinate-Tolerant Genetically Modified Oilseed Rape T45 for Food and Feed Uses, Import and Processing under Regulation (EC) No 1829/2003 (Application EFSA/GMO/UK/2005/25)
In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Directorate for Nature Management to conduct final environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The assignment includes a scientific environmental risk assessment of oilseed rape T45 (Reference EFSA/GMO/UK/2005/25) from Bayer CropScience for food and feed uses, import and processing. Oilseed rape T45 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority related to the EFSAs public hearing in 2007 (VKM 2007a). Food additives produced from T45 oilseed rape were notified in the EU as existing food additives within the meaning of Article 8 (1)(b) of Regulation 1829/2003, authorized under Directive 89/10/EEC (Community Register 2005). Feed materials produced from T45 were also notified as existing feed products containing, consisting of or produced from T45 according to Articles 8 and 20 of Regulation (EC) No 1829/2003 in 2003.   A notification for placing on the market of T45 according to the Directive 2001/18/EC was submitted in March 2004 (C/GB/04/M5/4), covering import and processing of T45 into food and feed. The application was further transferred into Regulation (EC) No 1829/2003 in November 2005 (EFSA/GMO/UK/2005/25). An application for renewal of authorisation for continued marketing of food additives and feed materials produced from T45 oilseed rape was submitted under Regulation (EC) No 1829/2003 in 2007 (EFSA/GMO/RX/T45). The EFSA GMO Panel performed one single comprehensive risk assessment for all intended uses of genetically modified oilseed rape T45, and issued a comprehensive scientific opinion for both applications submitted under Regulation (EC) No 1829/2003. The scientific opinion was published in January 30 2008 (EFSA 2008), and food and feed products containing or produced from oilseed rape T45 was approved by Commission Decision 26 March 2009 (Commission Decision 2009/184/EC).  The oilseed rape T45 is however currently being phased out (EU-COM 2009). The commercialisation of T45 oilseed rape seeds in third countries was stopped after the 2005 planting season and stocks of all oilseed rape T45 lines have been recalled from distribution and destroyed. The applicant commits not to commercialize the event in the future and the import will therefore be restricted to adventitious levels in oilseed rape commodity. Thus the incidence of oilseed rape T45 in the EU is expected to be limited. The environmental risk assessment of the oilseed rape T45 is based on information provided by the notifier in the application EFSA/GMO/UK/2005/25 and EFSA/GMO/RX/T45, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant.   The VKM GMO Panel has evaluated T45 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2006, 2011a), the environmental risk assessment of GM plants (EFSA 2010), the selection of comparators for the risk assessment of GM plants (EFSA 2011b), and for the post-market environmental monitoring of GM plants (EFSA 2006, 2011c).  The scientific risk assessment of oilseed rape T45 include molecular characterisation of the inserted DNA and expression of target proteins, comparative assessment of agronomic and phenotypic characteristics, unintended effects on plant fitness, potential for horizontal and vertical gene transfer, and evaluations of the post-market environmental plan. In line with its mandate, VKM emphasised that assessments of sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act, shall not be carried out by the Panel on Genetically Modified Organisms.  The glufosinate ammonium-tolerant oilseed rape transformation event T45 (Unique Identfier ACSBNØØ8-2) was developed by Agrobacterium-mediated transformation of protoplast from the conventional oilseed rape cultivar “AC Excel”. T45 contains a synthetic version of the native pat gene isolated from the bacteria Streptomyces viridochromogenes, strain Tü 494. The inserted gene encodes the enzyme phosphinothricin acetyltransferase (PAT), which confers tolerance to the herbical active substance glufosinate ammonium. The PAT enzyme detoxifies glufosinate-ammonium by acetylation of the L-isomer into N-acetyl-L-glufosinate ammonium (NAG) which does not inhibit glutamine synthetase and therefore confers tolerance to the herbicide. Glufosinate ammonium-tolerant oilseed rape transformation event T45 has been conventionally bred into an array of spring-type oilseed rape varieties. Molecular characterization: The molecular characterisation data established that only one copy of the gene cassette is integrated in the oilseed rape genomic DNA. Appropriate analysis of the integration site including sequence determination of the inserted DNA and flanking regions and bioinformatics analysis have been performed. Bioinformatics analyses of junction regions demonstrated the absence of any potential new ORFs coding for known toxins or allergens. The genetic stability of transformation event T45 was demonstrated at the genomic level over multiple generations by Southern analysis. Segregation analysis shows that event T45 is inherited as dominant, single locus trait. Phenotypic stability has been confirmed by stable tolerance to the herbicide for T45 lines and varieties derived from the event grown in Canada since 1993.  Oilseed rape transformation event T45 and the physical, chemical and functional characteristics of the proteins have previously been evaluated by The VKM Panel on Genetically Modified Organisms, and considered satisfactory (VKM 2007a). Comparative assessment: Based on results from comparative analyses of data from field trials located at representative sites and environments in Canada in 1995-1997, it is concluded that oilseed rape T45 is agronomically and phenotypically equivalent to the conventional counterpart and commercial available reference varieties, with the exception of maturity and the herbicide tolerance conferred by the PAT protein.  The field evaluations support a conclusion of no phenotypic changes indicative of increased plant weed/pest potential of event T45 compared to conventional oilseed rape. Furthermore, the results demonstrate that in-crop applications of glufosinate herbicide do not alter the phenotypic and agronomic characteristics of event T45 compared to conventional oilseed rape. Environmental risk: According to the applicant, the event T45 has been phased out, and stocks of all oilseed rape T45 lines have been recalled from distribution and destroyed since 2005. However, since future cultivation and import of oilseed rape T45 into the EU/EEA area cannot be entirely ruled out, the environmental risk assessment consider exposure of viable seeds of T45 through accidental spillage into the environment during transportation, storage, handling, processing and use of derived products. Oilseed rape is mainly a self-pollinating species, but has entomophilous flowers capable of both self- and cross-pollinating. Normally the level of outcrossing is about 30%, but outcrossing frequencies up to 55% are reported.  Several plant species related to oilseed rape that are either cultivated, occurs as weeds of cultivated and disturbed lands, or grow outside cultivation areas to which gene introgression from oilseed rape could be of concern. These are found both in the Brassica species complex and in related genera. A series of controlled crosses between oilseed rape and related taxa have been reported in the scientific literature. Because of a mismatch in the chromosome numbers most hybrids have a severely reduced fertility. Exceptions are hybrids obtained from crosses between oilseed rape and wild turnip (B. rapa ssp. campestris) and to a lesser extent, mustard greens (B. juncea), where spontaneously hybridising and transgene introgression under field conditions have been confirmed. Wild turnip is native to Norway and a common weed in arable lowlands. There is no evidence that the herbicide tolerant trait results in enhanced fitness, persistence or invasiveness of oilseed rape T45, or hybridizing wild relatives, compared to conventional oilseed rape varieties, unless the plants are exposed to herbicides with the active substance glufosinate ammonium. Glufosinate ammonium-containing herbicides have been withdrawn from the Norwegian market since 2008, and the substance will be phased out in the EU in 2017 for reasons of reproductive toxicity. Accidental spillage and loss of viable seeds of T45 during transport, storage, handling in the environment and processing into derived products is, however, likely to take place over time, and the establishment of small populations of oilseed rape T45 cannot be excluded. Feral oilseed rape T45 arising from spilled seed could theoretically pollinate conventional crop plants if the escaped populatio
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Essential Amino Acid Composition of Noodles Analogue from Aerial Yam, Rice and African Yam Bean Flour Blend Using Response Surface Methodology Hygienic Quality of Mbala-pinda, a Fermented Food Formulated from Local Products of Congo Occurrence of Virulent and Antibiotic Resistant Staphylococcus aureus in Selected Ready-To-Eat Foods in Obio/Akpor, Rivers State, Nigeria Influence of Starch Content on the Sensory and Rheological Quality of Fermented Soy Milk Variability in Health Impact: Examining Lifestyle and Dietary Habits Across Different Stages of Adolescence: A Comprehensive Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1