利用分解和融合技术提高地表温度数据时空分辨率的比较

Kukku Sara, E. Rajasekaran
{"title":"利用分解和融合技术提高地表温度数据时空分辨率的比较","authors":"Kukku Sara, E. Rajasekaran","doi":"10.1109/InGARSS48198.2020.9358936","DOIUrl":null,"url":null,"abstract":"Land Surface Temperature (LST) and its diurnal variation are important parameters for several applications. Thermal sensors in polar orbiting and geostationary orbiting satellites can provide LST data at high spatial and temporal resolutions respectively. This study aims to generate high spatiotemporal LST by combining the coarse resolution geostationary satellite data (INSAT 3D) with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product using spatial disaggregation (DisTrad model) and spatiotemporal fusion (STITFM model) techniques. In addition, the ability of these two methods to properly represent the diurnal temperature cycle (DTC) is also examined. It was found that the spatial disaggregation method provided relatively better results than spatiotemporal fusion technique in improving the spatiotemporal resolution of LST.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"25 1","pages":"46-49"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Spatiotemporal Resolution of Land Surface Temperature Data Using Disaggregation and Fusion Techniques: A Comparison\",\"authors\":\"Kukku Sara, E. Rajasekaran\",\"doi\":\"10.1109/InGARSS48198.2020.9358936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land Surface Temperature (LST) and its diurnal variation are important parameters for several applications. Thermal sensors in polar orbiting and geostationary orbiting satellites can provide LST data at high spatial and temporal resolutions respectively. This study aims to generate high spatiotemporal LST by combining the coarse resolution geostationary satellite data (INSAT 3D) with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product using spatial disaggregation (DisTrad model) and spatiotemporal fusion (STITFM model) techniques. In addition, the ability of these two methods to properly represent the diurnal temperature cycle (DTC) is also examined. It was found that the spatial disaggregation method provided relatively better results than spatiotemporal fusion technique in improving the spatiotemporal resolution of LST.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"25 1\",\"pages\":\"46-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地表温度(LST)及其日变化是许多应用的重要参数。极地轨道和地球静止轨道卫星上的热传感器可以分别提供高空间分辨率和高时间分辨率的地表温度数据。本研究将粗分辨率地球静止卫星(INSAT 3D)数据与中分辨率成像光谱仪(MODIS) LST产品结合,采用空间分解(distributed模型)和时空融合(STITFM模型)技术生成高时空LST。此外,本文还考察了这两种方法对温度日循环(DTC)的表征能力。结果表明,空间分解方法在提高地表温度时空分辨率方面优于时空融合技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Spatiotemporal Resolution of Land Surface Temperature Data Using Disaggregation and Fusion Techniques: A Comparison
Land Surface Temperature (LST) and its diurnal variation are important parameters for several applications. Thermal sensors in polar orbiting and geostationary orbiting satellites can provide LST data at high spatial and temporal resolutions respectively. This study aims to generate high spatiotemporal LST by combining the coarse resolution geostationary satellite data (INSAT 3D) with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product using spatial disaggregation (DisTrad model) and spatiotemporal fusion (STITFM model) techniques. In addition, the ability of these two methods to properly represent the diurnal temperature cycle (DTC) is also examined. It was found that the spatial disaggregation method provided relatively better results than spatiotemporal fusion technique in improving the spatiotemporal resolution of LST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1