使用x向量的多说话人对话的说话人识别

David Snyder, D. Garcia-Romero, Gregory Sell, A. McCree, Daniel Povey, S. Khudanpur
{"title":"使用x向量的多说话人对话的说话人识别","authors":"David Snyder, D. Garcia-Romero, Gregory Sell, A. McCree, Daniel Povey, S. Khudanpur","doi":"10.1109/ICASSP.2019.8683760","DOIUrl":null,"url":null,"abstract":"Recently, deep neural networks that map utterances to fixed-dimensional embeddings have emerged as the state-of-the-art in speaker recognition. Our prior work introduced x-vectors, an embedding that is very effective for both speaker recognition and diarization. This paper combines our previous work and applies it to the problem of speaker recognition on multi-speaker conversations. We measure performance on Speakers in the Wild and report what we believe are the best published error rates on this dataset. Moreover, we find that diarization substantially reduces error rate when there are multiple speakers, while maintaining excellent performance on single-speaker recordings. Finally, we introduce an easily implemented method to remove the domain-sensitive threshold typically used in the clustering stage of a diarization system. The proposed method is more robust to domain shifts, and achieves similar results to those obtained using a well-tuned threshold.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"4 1","pages":"5796-5800"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"244","resultStr":"{\"title\":\"Speaker Recognition for Multi-speaker Conversations Using X-vectors\",\"authors\":\"David Snyder, D. Garcia-Romero, Gregory Sell, A. McCree, Daniel Povey, S. Khudanpur\",\"doi\":\"10.1109/ICASSP.2019.8683760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep neural networks that map utterances to fixed-dimensional embeddings have emerged as the state-of-the-art in speaker recognition. Our prior work introduced x-vectors, an embedding that is very effective for both speaker recognition and diarization. This paper combines our previous work and applies it to the problem of speaker recognition on multi-speaker conversations. We measure performance on Speakers in the Wild and report what we believe are the best published error rates on this dataset. Moreover, we find that diarization substantially reduces error rate when there are multiple speakers, while maintaining excellent performance on single-speaker recordings. Finally, we introduce an easily implemented method to remove the domain-sensitive threshold typically used in the clustering stage of a diarization system. The proposed method is more robust to domain shifts, and achieves similar results to those obtained using a well-tuned threshold.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"4 1\",\"pages\":\"5796-5800\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"244\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 244

摘要

最近,将话语映射到固定维度嵌入的深度神经网络已经成为说话人识别的最新技术。我们之前的工作引入了x向量,这是一种对说话人识别和拨号都非常有效的嵌入。本文结合前人的研究成果,将其应用于多说话人对话中的说话人识别问题。我们在野外扬声器上测量性能,并报告我们认为该数据集上发布的最佳错误率。此外,我们发现,当有多个扬声器时,拨号化大大降低了错误率,同时在单扬声器录音时保持了优异的性能。最后,我们介绍了一种易于实现的方法来去除通常在分类系统的聚类阶段使用的域敏感阈值。该方法对域漂移具有更强的鲁棒性,并且与使用调优阈值获得的结果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speaker Recognition for Multi-speaker Conversations Using X-vectors
Recently, deep neural networks that map utterances to fixed-dimensional embeddings have emerged as the state-of-the-art in speaker recognition. Our prior work introduced x-vectors, an embedding that is very effective for both speaker recognition and diarization. This paper combines our previous work and applies it to the problem of speaker recognition on multi-speaker conversations. We measure performance on Speakers in the Wild and report what we believe are the best published error rates on this dataset. Moreover, we find that diarization substantially reduces error rate when there are multiple speakers, while maintaining excellent performance on single-speaker recordings. Finally, we introduce an easily implemented method to remove the domain-sensitive threshold typically used in the clustering stage of a diarization system. The proposed method is more robust to domain shifts, and achieves similar results to those obtained using a well-tuned threshold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1