Chen Yang, Can Wang, Weidong Zhang, Huiyi Zhang, Xuangou Wu
{"title":"基于突发特征聚合的分散应用识别","authors":"Chen Yang, Can Wang, Weidong Zhang, Huiyi Zhang, Xuangou Wu","doi":"10.1109/CSCWD57460.2023.10152673","DOIUrl":null,"url":null,"abstract":"With the development of blockchain technology, de-centralized applications (DApps) are increasingly being developed and deployed on blockchain platforms. However, the complex data validation mechanism and strict encryption protocol settings of blockchain often lead to sparse traffic behavior of DApps. This sparsity poses a challenge for existing encrypted traffic identification methods to extract distinguishable DApps traffic features. In this study, we propose a novel approach for identifying DApps traffic features by observing the differences in burst timing features of DApps. We introduce a continuous burst feature matrix (CBFM) method based on burst feature aggregation that can aggregate sparse features and express the burst timing differences of DApps encrypted traffic. Additionally, we design a deep learning classifier to automatically extract the features contained in the CBFM. Our experimental results on real datasets demonstrate that the proposed CBFM method achieves a classification accuracy of 94%, outperforming state-of-the-art methods.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"21 1","pages":"1551-1556"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized Application Identification via Burst Feature Aggregation\",\"authors\":\"Chen Yang, Can Wang, Weidong Zhang, Huiyi Zhang, Xuangou Wu\",\"doi\":\"10.1109/CSCWD57460.2023.10152673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of blockchain technology, de-centralized applications (DApps) are increasingly being developed and deployed on blockchain platforms. However, the complex data validation mechanism and strict encryption protocol settings of blockchain often lead to sparse traffic behavior of DApps. This sparsity poses a challenge for existing encrypted traffic identification methods to extract distinguishable DApps traffic features. In this study, we propose a novel approach for identifying DApps traffic features by observing the differences in burst timing features of DApps. We introduce a continuous burst feature matrix (CBFM) method based on burst feature aggregation that can aggregate sparse features and express the burst timing differences of DApps encrypted traffic. Additionally, we design a deep learning classifier to automatically extract the features contained in the CBFM. Our experimental results on real datasets demonstrate that the proposed CBFM method achieves a classification accuracy of 94%, outperforming state-of-the-art methods.\",\"PeriodicalId\":51008,\"journal\":{\"name\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"volume\":\"21 1\",\"pages\":\"1551-1556\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Supported Cooperative Work-The Journal of Collaborative Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCWD57460.2023.10152673\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152673","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Decentralized Application Identification via Burst Feature Aggregation
With the development of blockchain technology, de-centralized applications (DApps) are increasingly being developed and deployed on blockchain platforms. However, the complex data validation mechanism and strict encryption protocol settings of blockchain often lead to sparse traffic behavior of DApps. This sparsity poses a challenge for existing encrypted traffic identification methods to extract distinguishable DApps traffic features. In this study, we propose a novel approach for identifying DApps traffic features by observing the differences in burst timing features of DApps. We introduce a continuous burst feature matrix (CBFM) method based on burst feature aggregation that can aggregate sparse features and express the burst timing differences of DApps encrypted traffic. Additionally, we design a deep learning classifier to automatically extract the features contained in the CBFM. Our experimental results on real datasets demonstrate that the proposed CBFM method achieves a classification accuracy of 94%, outperforming state-of-the-art methods.
期刊介绍:
Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW.
The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas.
The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.