拒水土壤物理特性的评价

M. Movasat, I. Tomac
{"title":"拒水土壤物理特性的评价","authors":"M. Movasat, I. Tomac","doi":"10.1061/(ASCE)GT.1943-5606.0002604","DOIUrl":null,"url":null,"abstract":"This note presents a comprehensive characterization of physical and mechanical properties of water repellent (hydrophobic) soil collected from Cleveland National Forest in California immediately after the Holy Fire, 2018, and delineates comparisons with chemically induced hydrophobic sand in the laboratory. Hydrophobicity is a particle surface characteristic that governs different levels of attraction between water molecules and solid particles. Wildfires can cause different levels of hydrophobicity in shallow soil layers based on fire severity, vegetation, and chemical structure of the soil. Natural and chemically induced regular and hydrophobic sands are characterized by grain size distribution, water retention curve, water contact angle and electron microscopic imaging, including the relationship between water entry value and the drop contact angle in hydrophobic soil. Comparative knowledge of natural and chemically induced hydrophobic soil properties will help future research to better predict soil behavior and improve insights into post-wildfire soil erosion and mudflow mechanisms. This note contributes to a database of wildfire-induced hydrophobic soil with detailed properties and assesses the applicability of laboratory made hydrophobic soils for studying mudflows by comparison to the natural water repellent soil collected from the burned site.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Assessment of Physical Properties of Water Repellent Soils\",\"authors\":\"M. Movasat, I. Tomac\",\"doi\":\"10.1061/(ASCE)GT.1943-5606.0002604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note presents a comprehensive characterization of physical and mechanical properties of water repellent (hydrophobic) soil collected from Cleveland National Forest in California immediately after the Holy Fire, 2018, and delineates comparisons with chemically induced hydrophobic sand in the laboratory. Hydrophobicity is a particle surface characteristic that governs different levels of attraction between water molecules and solid particles. Wildfires can cause different levels of hydrophobicity in shallow soil layers based on fire severity, vegetation, and chemical structure of the soil. Natural and chemically induced regular and hydrophobic sands are characterized by grain size distribution, water retention curve, water contact angle and electron microscopic imaging, including the relationship between water entry value and the drop contact angle in hydrophobic soil. Comparative knowledge of natural and chemically induced hydrophobic soil properties will help future research to better predict soil behavior and improve insights into post-wildfire soil erosion and mudflow mechanisms. This note contributes to a database of wildfire-induced hydrophobic soil with detailed properties and assesses the applicability of laboratory made hydrophobic soils for studying mudflows by comparison to the natural water repellent soil collected from the burned site.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/(ASCE)GT.1943-5606.0002604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/(ASCE)GT.1943-5606.0002604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了2018年圣火之后从加州克利夫兰国家森林收集的疏水(疏水)土壤的物理和机械特性的综合特征,并与实验室中化学诱导的疏水砂进行了比较。疏水性是粒子表面的一种特性,它决定了水分子和固体粒子之间不同程度的吸引力。野火会在浅层土壤中造成不同程度的疏水性,这取决于火灾的严重程度、植被和土壤的化学结构。天然砂和化学诱导的规则砂和疏水砂的粒度分布、保水曲线、水接触角和电镜成像特征,包括疏水土中水进入值与水滴接触角的关系。自然和化学诱导疏水土壤特性的比较知识将有助于未来的研究更好地预测土壤行为,并提高对野火后土壤侵蚀和泥石流机制的认识。该笔记有助于建立具有详细特性的野火疏水性土壤数据库,并通过与从燃烧地点收集的天然疏水性土壤进行比较,评估实验室制备的疏水性土壤在研究泥石流方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of Physical Properties of Water Repellent Soils
This note presents a comprehensive characterization of physical and mechanical properties of water repellent (hydrophobic) soil collected from Cleveland National Forest in California immediately after the Holy Fire, 2018, and delineates comparisons with chemically induced hydrophobic sand in the laboratory. Hydrophobicity is a particle surface characteristic that governs different levels of attraction between water molecules and solid particles. Wildfires can cause different levels of hydrophobicity in shallow soil layers based on fire severity, vegetation, and chemical structure of the soil. Natural and chemically induced regular and hydrophobic sands are characterized by grain size distribution, water retention curve, water contact angle and electron microscopic imaging, including the relationship between water entry value and the drop contact angle in hydrophobic soil. Comparative knowledge of natural and chemically induced hydrophobic soil properties will help future research to better predict soil behavior and improve insights into post-wildfire soil erosion and mudflow mechanisms. This note contributes to a database of wildfire-induced hydrophobic soil with detailed properties and assesses the applicability of laboratory made hydrophobic soils for studying mudflows by comparison to the natural water repellent soil collected from the burned site.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance photonic microwave filters based on a 50GHz FSR optical soliton crystal Kerr micro-comb Ultra-high bandwidth fiber-optic data transmission with a single chip source High order pulse-echo (HOPE) ultrasound Data-driven modelling of scalable spinodoid structures for energy absorption Radioplasmonics: design of plasmonic milli-particles in air and absorbing media for antenna communication and human-body in-vivo applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1