用于高能量密度物理实验的两个拍瓦级脉冲功率加速器的概念设计

W. Stygar, T. Awe, J. E. Bailey, N. Bennett, E. Breden, E. M. Campbell, R. E. Clark, R. A. Cooper, M. Cuneo, J. B. Ennis, D. Fehl, T. Genoni, M. R. Gomez, G. Greiser, F. Gruner, M. C. Herrmann, B. Hutsel, C. A. Jennings, D. Jobe, B. M. Jones, M. C. Jones, P. A. Jones, P. F. Knapp, J. Lash, K. LeChien, J. Leckbee, R. Leeper, S. Lewis, F. Long, D. Lucero, E. Madrid, M. R. Martin, M. Matzen, M. Mazarakis, R. D. McBride, G. R. McKee, C. Miller, J. K. Moore, C. Mostrom, T. Mulville, K. Peterson, J. L. Porter, D. Reisman, G. Rochau, G. Rochau, D. Rose, D. Rovang, M. E. Savage, M. Sceiford, P. Schmit, R. F. Schneider, J. Schwarz, A. Sefkow, D. Sinars, S. Slutz, R. Spielman, B. Stoltzfus, C. Thoma, R. Vesey, P. Wakeland, D. Welch, M. Wisher, J. Woodworth
{"title":"用于高能量密度物理实验的两个拍瓦级脉冲功率加速器的概念设计","authors":"W. Stygar, T. Awe, J. E. Bailey, N. Bennett, E. Breden, E. M. Campbell, R. E. Clark, R. A. Cooper, M. Cuneo, J. B. Ennis, D. Fehl, T. Genoni, M. R. Gomez, G. Greiser, F. Gruner, M. C. Herrmann, B. Hutsel, C. A. Jennings, D. Jobe, B. M. Jones, M. C. Jones, P. A. Jones, P. F. Knapp, J. Lash, K. LeChien, J. Leckbee, R. Leeper, S. Lewis, F. Long, D. Lucero, E. Madrid, M. R. Martin, M. Matzen, M. Mazarakis, R. D. McBride, G. R. McKee, C. Miller, J. K. Moore, C. Mostrom, T. Mulville, K. Peterson, J. L. Porter, D. Reisman, G. Rochau, G. Rochau, D. Rose, D. Rovang, M. E. Savage, M. Sceiford, P. Schmit, R. F. Schneider, J. Schwarz, A. Sefkow, D. Sinars, S. Slutz, R. Spielman, B. Stoltzfus, C. Thoma, R. Vesey, P. Wakeland, D. Welch, M. Wisher, J. Woodworth","doi":"10.1103/PHYSREVSTAB.18.110401","DOIUrl":null,"url":null,"abstract":"Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The acceleratormore » generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.« less","PeriodicalId":20072,"journal":{"name":"Physical Review Special Topics-accelerators and Beams","volume":"6 1","pages":"110401"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments\",\"authors\":\"W. Stygar, T. Awe, J. E. Bailey, N. Bennett, E. Breden, E. M. Campbell, R. E. Clark, R. A. Cooper, M. Cuneo, J. B. Ennis, D. Fehl, T. Genoni, M. R. Gomez, G. Greiser, F. Gruner, M. C. Herrmann, B. Hutsel, C. A. Jennings, D. Jobe, B. M. Jones, M. C. Jones, P. A. Jones, P. F. Knapp, J. Lash, K. LeChien, J. Leckbee, R. Leeper, S. Lewis, F. Long, D. Lucero, E. Madrid, M. R. Martin, M. Matzen, M. Mazarakis, R. D. McBride, G. R. McKee, C. Miller, J. K. Moore, C. Mostrom, T. Mulville, K. Peterson, J. L. Porter, D. Reisman, G. Rochau, G. Rochau, D. Rose, D. Rovang, M. E. Savage, M. Sceiford, P. Schmit, R. F. Schneider, J. Schwarz, A. Sefkow, D. Sinars, S. Slutz, R. Spielman, B. Stoltzfus, C. Thoma, R. Vesey, P. Wakeland, D. Welch, M. Wisher, J. Woodworth\",\"doi\":\"10.1103/PHYSREVSTAB.18.110401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The acceleratormore » generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.« less\",\"PeriodicalId\":20072,\"journal\":{\"name\":\"Physical Review Special Topics-accelerators and Beams\",\"volume\":\"6 1\",\"pages\":\"110401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Special Topics-accelerators and Beams\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVSTAB.18.110401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Special Topics-accelerators and Beams","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVSTAB.18.110401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

摘要

在这里,我们已经开发了两个pb级脉冲功率加速器的概念设计:z300和z800。该设计基于基于两个概念的加速器架构:单级电脉冲压缩和阻抗匹配。圣·阿克塞尔牧师[j].光谱学与光谱学,2001,11(2):1 - 4。每台机器的主电源由90个线性变压器驱动器(LTD)模块组成。每个模块由串联电连接的有限腔组成,每个腔由并联电连接的5gw有限砖块供电。(一块砖由一个开关和两个串联电容器组成。)六台水绝缘径向传输在线阻抗变压器将模块产生的电力输送到六层真空绝缘体堆栈。这堆材料充当加速器的水-真空界面。该堆栈连接到6条锥形外磁绝缘真空传输线(MITLs)上,这些传输线通过三孔真空绕线以10厘米半径平行连接。卷积将六个外部MITL输出端的电流求和,并将组合电流传递给单个短的内部MITL。内部的MITL将组合电流传输到加速器的物理包负载。z300直径35米,在其有限的电容器中存储48兆焦耳的电能。该加速器在LTD系统的输出处产生320太瓦的电力,并在154秒内向磁化衬垫惯性聚变(MagLIF)目标提供48毫瓦的电力。等离子体学报[j].北京:北京大学学报(自然科学版),2010。MagLIF目标的峰值功率为870太瓦,这是整个加速器的最高功率。功率放大由位于中心的真空部分完成,真空部分作为中间电感储能装置。z300的主要目标是实现热核点火;即,聚变产量超过加速器传递给衬垫的能量。二维磁流体动力学(MHD)模拟表明,Z 300将向尾管输送4.3兆焦耳,产量约为18兆焦耳。z800直径52米,储存130兆焦耳。该加速器在其LTD系统输出时产生890 TW,并在113 ns内向MagLIF目标提供65 MA。MagLIF尾管的峰值功率为2500太瓦。z800的主要目标是实现高产量的热核聚变;也就是说,产量超过了加速器电容器最初储存的能量。二维MHD模拟表明,Z 800将向尾管输送8.0 MJ,并达到440 MJ的产量。z300和z800,或这些加速器的变体,将允许国际高能量密度物理学团体在迄今为止无法进入的参数体系上进行先进的惯性约束聚变、辐射物理学、材料物理学和实验室天体物理学实验。«少
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The acceleratormore » generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.« less
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
期刊介绍: Physical Review Special Topics - Accelerators and Beams (PRST-AB), is a peer reviewed, purely electronic journal, distributed without charge to readers and funded by contributions from national laboratories. It covers the full range of accelerator science and technology: subsystem and component technologies, beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron radiation production, spallation neutron sources, medical therapy, and intense beam applications.
期刊最新文献
Laser-triggered proton acceleration from hydrogenated low-density targets Influence of the injected beam parameters on the capture efficiency of an electron cyclotron resonance based charge breeder Transverse coupled-bunch instability thresholds in the presence of a harmonic-cavity-flattened rf potential Extreme regimes of femtosecond photoemission from a copper cathode in a dc electron gun TMCI threshold with space charge and different wake fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1