MovingPandas: Python中移动数据的有效结构

Q3 Social Sciences GI_Forum Pub Date : 2019-06-19 DOI:10.1553/GISCIENCE2019_01_S54
A. Graser
{"title":"MovingPandas: Python中移动数据的有效结构","authors":"A. Graser","doi":"10.1553/GISCIENCE2019_01_S54","DOIUrl":null,"url":null,"abstract":"Movement data analysis is a high-interest topic in many scientific domains. Even though Python is the scripting language of choice in the GIS world, currently there is no Python library that would enable researchers and practitioners to interact with and analyse movement data efficiently. To close this gap, we present MovingPandas, a new Python library for dealing with movement data. Its development is based on an analysis of state-of-the-art conceptual frameworks and existing implementations (in PostGIS, Hermes, and the R package trajectories). We describe how MovingPandas avoids limitations of Simple Feature-based movement data models commonly used to handle trajectories in the GIS world. Finally, we present the current state of the MovingPandas implementation and demonstrate its use in stand-alone Python scripts, as well as within the context of the desktop GIS application QGIS. This work represents the first step towards a general-purpose Python library that enables researchers and practitioners in the GIS field and beyond to handle and analyse movement data more efficiently","PeriodicalId":29645,"journal":{"name":"GI_Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"MovingPandas: Efficient Structures for Movement Data in Python\",\"authors\":\"A. Graser\",\"doi\":\"10.1553/GISCIENCE2019_01_S54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Movement data analysis is a high-interest topic in many scientific domains. Even though Python is the scripting language of choice in the GIS world, currently there is no Python library that would enable researchers and practitioners to interact with and analyse movement data efficiently. To close this gap, we present MovingPandas, a new Python library for dealing with movement data. Its development is based on an analysis of state-of-the-art conceptual frameworks and existing implementations (in PostGIS, Hermes, and the R package trajectories). We describe how MovingPandas avoids limitations of Simple Feature-based movement data models commonly used to handle trajectories in the GIS world. Finally, we present the current state of the MovingPandas implementation and demonstrate its use in stand-alone Python scripts, as well as within the context of the desktop GIS application QGIS. This work represents the first step towards a general-purpose Python library that enables researchers and practitioners in the GIS field and beyond to handle and analyse movement data more efficiently\",\"PeriodicalId\":29645,\"journal\":{\"name\":\"GI_Forum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GI_Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/GISCIENCE2019_01_S54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GI_Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/GISCIENCE2019_01_S54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 51

摘要

运动数据分析是许多科学领域的热门话题。尽管Python是GIS世界中首选的脚本语言,但目前还没有Python库使研究人员和从业者能够有效地与移动数据进行交互和分析。为了缩小这一差距,我们提出了MovingPandas,这是一个新的Python库,用于处理移动数据。它的开发是基于对最先进的概念框架和现有实现(在PostGIS、Hermes和R包轨迹中)的分析。我们描述了MovingPandas如何避免在GIS世界中通常用于处理轨迹的基于简单特征的运动数据模型的限制。最后,我们介绍了MovingPandas实现的当前状态,并演示了它在独立Python脚本中以及在桌面GIS应用程序QGIS上下文中的使用。这项工作代表了通用Python库的第一步,使GIS领域的研究人员和从业者能够更有效地处理和分析运动数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MovingPandas: Efficient Structures for Movement Data in Python
Movement data analysis is a high-interest topic in many scientific domains. Even though Python is the scripting language of choice in the GIS world, currently there is no Python library that would enable researchers and practitioners to interact with and analyse movement data efficiently. To close this gap, we present MovingPandas, a new Python library for dealing with movement data. Its development is based on an analysis of state-of-the-art conceptual frameworks and existing implementations (in PostGIS, Hermes, and the R package trajectories). We describe how MovingPandas avoids limitations of Simple Feature-based movement data models commonly used to handle trajectories in the GIS world. Finally, we present the current state of the MovingPandas implementation and demonstrate its use in stand-alone Python scripts, as well as within the context of the desktop GIS application QGIS. This work represents the first step towards a general-purpose Python library that enables researchers and practitioners in the GIS field and beyond to handle and analyse movement data more efficiently
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GI_Forum
GI_Forum Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
1.10
自引率
0.00%
发文量
9
审稿时长
23 weeks
期刊最新文献
Above-Ground Forest Biomass Estimation using Multispectral LiDAR Data in a Multilayered Coniferous Forest The State of Trajectory Visualization in Notebook Environments Development of a Standardized, Interdisciplinary Approach for Evaluating the Impact of Infrastructural Interventions on Sustainable Mobility A Comparative Study of Geocoder Performance on Unstructured Tweet Locations Application of Object-Based Image Analysis for Detecting and Differentiating between Shallow Landslides and Debris Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1