基于砂轮表面状况量化的修整条件评价

Gen Uchida, T. Yamada, Yutarou Iwasaki
{"title":"基于砂轮表面状况量化的修整条件评价","authors":"Gen Uchida, T. Yamada, Yutarou Iwasaki","doi":"10.20965/ijat.2023.p0021","DOIUrl":null,"url":null,"abstract":"Different grinding wheel surface conditions affect the ground surface roughness and grinding resistance during the grinding process. In addition, as the grinding wheel surface condition changes depending on the dressing conditions, the difference in the dressing conditions significantly affects the grinding characteristics. However, the dressing condition is affected by factors such as the dressing lead, depth of dressing cut, and tip shape of the dresser. Thus, optimum dressing conditions are difficult to achieve. Furthermore, even if the dressing is applied under the same dressing conditions, the grinding wheel surface condition will differ as the tip wear of the dresser progresses. There is a need for a method to quantitatively evaluate the relationship between the dressing conditions, grinding wheel surface condition, and grinding characteristics while considering the difference in the tip shape of the dresser. Thus, the relationship between the tip shape of the dresser and dressing conditions was evaluated using the dressing overlap ratio. This study aimed to evaluate the effect of different dressing overlap ratios on the grinding wheel surface condition and grinding characteristics with different grain sizes. Consequently, even if the tip shape of the dresser changes, the effect of the different dressing conditions on the grinding wheel surface condition and grinding characteristics could be quantitatively determined using the dressing overlap ratio. Furthermore, the relationship between the calculated successive cutting-point spacing, area of active abrasive grains, and grinding characteristics could be quantitatively evaluated for grinding wheels with different grain sizes.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"106 1","pages":"21-31"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of Dressing Condition Based on Quantification of Grinding Wheel Surface Conditions\",\"authors\":\"Gen Uchida, T. Yamada, Yutarou Iwasaki\",\"doi\":\"10.20965/ijat.2023.p0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different grinding wheel surface conditions affect the ground surface roughness and grinding resistance during the grinding process. In addition, as the grinding wheel surface condition changes depending on the dressing conditions, the difference in the dressing conditions significantly affects the grinding characteristics. However, the dressing condition is affected by factors such as the dressing lead, depth of dressing cut, and tip shape of the dresser. Thus, optimum dressing conditions are difficult to achieve. Furthermore, even if the dressing is applied under the same dressing conditions, the grinding wheel surface condition will differ as the tip wear of the dresser progresses. There is a need for a method to quantitatively evaluate the relationship between the dressing conditions, grinding wheel surface condition, and grinding characteristics while considering the difference in the tip shape of the dresser. Thus, the relationship between the tip shape of the dresser and dressing conditions was evaluated using the dressing overlap ratio. This study aimed to evaluate the effect of different dressing overlap ratios on the grinding wheel surface condition and grinding characteristics with different grain sizes. Consequently, even if the tip shape of the dresser changes, the effect of the different dressing conditions on the grinding wheel surface condition and grinding characteristics could be quantitatively determined using the dressing overlap ratio. Furthermore, the relationship between the calculated successive cutting-point spacing, area of active abrasive grains, and grinding characteristics could be quantitatively evaluated for grinding wheels with different grain sizes.\",\"PeriodicalId\":13583,\"journal\":{\"name\":\"Int. J. Autom. Technol.\",\"volume\":\"106 1\",\"pages\":\"21-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Autom. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2023.p0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2023.p0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

磨削过程中,不同的砂轮表面状况会影响磨削表面粗糙度和磨削阻力。此外,由于修整条件不同,砂轮表面状况也会发生变化,修整条件的差异会显著影响磨削特性。然而,修整条件受修整引线、修整切口深度和修整器尖端形状等因素的影响。因此,最佳的修整条件是难以实现的。此外,即使在相同的修整条件下进行修整,随着修整器尖端磨损的加深,砂轮表面状况也会有所不同。需要一种定量评价修整条件、砂轮表面状况和磨削特性之间关系的方法,同时考虑修整器尖端形状的差异。因此,利用修整重叠率评价了修整器尖端形状与修整条件之间的关系。本研究旨在评价不同修整重叠比对不同粒度砂轮表面状况和磨削特性的影响。因此,即使修整器的尖端形状发生变化,也可以利用修整重叠比定量地确定不同修整条件对砂轮表面状况和磨削特性的影响。此外,还可以定量评价不同粒度砂轮的连续切削点间距、有效磨粒面积与磨削特性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Dressing Condition Based on Quantification of Grinding Wheel Surface Conditions
Different grinding wheel surface conditions affect the ground surface roughness and grinding resistance during the grinding process. In addition, as the grinding wheel surface condition changes depending on the dressing conditions, the difference in the dressing conditions significantly affects the grinding characteristics. However, the dressing condition is affected by factors such as the dressing lead, depth of dressing cut, and tip shape of the dresser. Thus, optimum dressing conditions are difficult to achieve. Furthermore, even if the dressing is applied under the same dressing conditions, the grinding wheel surface condition will differ as the tip wear of the dresser progresses. There is a need for a method to quantitatively evaluate the relationship between the dressing conditions, grinding wheel surface condition, and grinding characteristics while considering the difference in the tip shape of the dresser. Thus, the relationship between the tip shape of the dresser and dressing conditions was evaluated using the dressing overlap ratio. This study aimed to evaluate the effect of different dressing overlap ratios on the grinding wheel surface condition and grinding characteristics with different grain sizes. Consequently, even if the tip shape of the dresser changes, the effect of the different dressing conditions on the grinding wheel surface condition and grinding characteristics could be quantitatively determined using the dressing overlap ratio. Furthermore, the relationship between the calculated successive cutting-point spacing, area of active abrasive grains, and grinding characteristics could be quantitatively evaluated for grinding wheels with different grain sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages of Injection Mold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process Experimental Investigation of Spatter Particle Behavior and Improvement in Build Quality in PBF-LB Process Planning with Removal of Melting Penetration and Temper Colors in 5-Axis Hybrid Additive and Subtractive Manufacturing Technique for Introducing Internal Defects with Arbitrary Sizes and Locations in Metals via Additive Manufacturing and Evaluation of Fatigue Properties Editorial: Recent Trends in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1