具有一般低级约束的非线性规划的无导数方法

IF 2.5 3区 数学 Q1 MATHEMATICS, APPLIED Computational & Applied Mathematics Pub Date : 2011-01-17 DOI:10.1590/S1807-03022011000100003
M. A. Diniz-Ehrhardt, J. Martínez, L. G. Pedroso
{"title":"具有一般低级约束的非线性规划的无导数方法","authors":"M. A. Diniz-Ehrhardt, J. Martínez, L. G. Pedroso","doi":"10.1590/S1807-03022011000100003","DOIUrl":null,"url":null,"abstract":"Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martinez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CPLD) constraint qualification. The form of our main algorithm allows us to employ well established derivative-free subalgorithms for solving lower-level constrained subproblems. Numerical experiments are presented.","PeriodicalId":50649,"journal":{"name":"Computational & Applied Mathematics","volume":"888 1","pages":"19-52"},"PeriodicalIF":2.5000,"publicationDate":"2011-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Derivative-free methods for nonlinear programming with general lower-level constraints\",\"authors\":\"M. A. Diniz-Ehrhardt, J. Martínez, L. G. Pedroso\",\"doi\":\"10.1590/S1807-03022011000100003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martinez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CPLD) constraint qualification. The form of our main algorithm allows us to employ well established derivative-free subalgorithms for solving lower-level constrained subproblems. Numerical experiments are presented.\",\"PeriodicalId\":50649,\"journal\":{\"name\":\"Computational & Applied Mathematics\",\"volume\":\"888 1\",\"pages\":\"19-52\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2011-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational & Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1590/S1807-03022011000100003\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational & Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1590/S1807-03022011000100003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 43

摘要

本文介绍了带约束的无导数连续优化问题的增广拉格朗日方法。该算法继承了Andreani, Birgin, Martinez和Schuverdt对存在和可用解析导数情况下的收敛性结果。特别是可行极限点在恒定正线性相关(CPLD)约束条件下满足KKT条件。我们的主要算法的形式允许我们使用完善的无导数子算法来解决较低层次的约束子问题。给出了数值实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Derivative-free methods for nonlinear programming with general lower-level constraints
Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martinez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CPLD) constraint qualification. The form of our main algorithm allows us to employ well established derivative-free subalgorithms for solving lower-level constrained subproblems. Numerical experiments are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational & Applied Mathematics
Computational & Applied Mathematics Mathematics-Computational Mathematics
CiteScore
4.50
自引率
11.50%
发文量
352
审稿时长
>12 weeks
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
期刊最新文献
A numerical investigation with energy-preservation for nonlinear space-fractional Klein–Gordon–Schrödinger system A posteriori error estimates of a DG method for optimal control problems governed by the transport equation A diagonally scaled Newton-type proximal method for minimization of the models with nonsmooth composite cost functions Two general splitting methods with alternated inertia for solving split equality problem in Hilbert spaces On $$(G_O,O)-$$fuzzy rough sets based on overlap and grouping functions over complete lattices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1