陈述透明人脸识别的比较评分不确定性和验证决策置信度

Marco Huber, P. Terhorst, Florian Kirchbuchner, N. Damer, Arjan Kuijper
{"title":"陈述透明人脸识别的比较评分不确定性和验证决策置信度","authors":"Marco Huber, P. Terhorst, Florian Kirchbuchner, N. Damer, Arjan Kuijper","doi":"10.48550/arXiv.2210.10354","DOIUrl":null,"url":null,"abstract":"Face Recognition (FR) is increasingly used in critical verification decisions and thus, there is a need for assessing the trustworthiness of such decisions. The confidence of a decision is often based on the overall performance of the model or on the image quality. We propose to propagate model uncertainties to scores and decisions in an effort to increase the transparency of verification decisions. This work presents two contributions. First, we propose an approach to estimate the uncertainty of face comparison scores. Second, we introduce a confidence measure of the system's decision to provide insights into the verification decision. The suitability of the comparison scores uncertainties and the verification decision confidences have been experimentally proven on three face recognition models on two datasets.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"148 1","pages":"506"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stating Comparison Score Uncertainty and Verification Decision Confidence Towards Transparent Face Recognition\",\"authors\":\"Marco Huber, P. Terhorst, Florian Kirchbuchner, N. Damer, Arjan Kuijper\",\"doi\":\"10.48550/arXiv.2210.10354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face Recognition (FR) is increasingly used in critical verification decisions and thus, there is a need for assessing the trustworthiness of such decisions. The confidence of a decision is often based on the overall performance of the model or on the image quality. We propose to propagate model uncertainties to scores and decisions in an effort to increase the transparency of verification decisions. This work presents two contributions. First, we propose an approach to estimate the uncertainty of face comparison scores. Second, we introduce a confidence measure of the system's decision to provide insights into the verification decision. The suitability of the comparison scores uncertainties and the verification decision confidences have been experimentally proven on three face recognition models on two datasets.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"148 1\",\"pages\":\"506\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.10354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.10354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人脸识别(FR)越来越多地用于关键的验证决策,因此有必要评估这些决策的可信度。决策的可信度通常基于模型的整体性能或图像质量。我们建议将模型不确定性传播到分数和决策中,以增加验证决策的透明度。这项工作有两个贡献。首先,我们提出了一种估计人脸比较分数不确定性的方法。其次,我们引入系统决策的置信度度量,以提供对验证决策的洞察。在两个数据集上的三种人脸识别模型上,实验证明了比较分数不确定性和验证决策置信度的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stating Comparison Score Uncertainty and Verification Decision Confidence Towards Transparent Face Recognition
Face Recognition (FR) is increasingly used in critical verification decisions and thus, there is a need for assessing the trustworthiness of such decisions. The confidence of a decision is often based on the overall performance of the model or on the image quality. We propose to propagate model uncertainties to scores and decisions in an effort to increase the transparency of verification decisions. This work presents two contributions. First, we propose an approach to estimate the uncertainty of face comparison scores. Second, we introduce a confidence measure of the system's decision to provide insights into the verification decision. The suitability of the comparison scores uncertainties and the verification decision confidences have been experimentally proven on three face recognition models on two datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Anatomically Consistent Embedding for Chest Radiography. Single Pixel Spectral Color Constancy DiffSketching: Sketch Control Image Synthesis with Diffusion Models Defect Transfer GAN: Diverse Defect Synthesis for Data Augmentation Mitigating Bias in Visual Transformers via Targeted Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1