C. Echeverría‐Arrondo, Agustin O. Alvarez, S. Masi, F. Fabregat‐Santiago, F. A. Porta
{"title":"无表面活性剂水热法制备CsPbX3粉末(X = Cl, Br和I)的电子、结构、光学和电学性质","authors":"C. Echeverría‐Arrondo, Agustin O. Alvarez, S. Masi, F. Fabregat‐Santiago, F. A. Porta","doi":"10.3390/nanomanufacturing3020013","DOIUrl":null,"url":null,"abstract":"Recently, several strategies have been adopted for the cesium lead halide, CsPbX3 (X = Cl, Br, and/or I), crystal growth with a perovskite-type structure, paving the way for the further development of innovative optoelectronic and photovoltaic applications. The optoelectronic properties of advanced materials are controlled, in principle, by effects of morphology, particle size, structure, and composition, as well as imperfections in these parameters. Herein, we report a detailed investigation, using theoretical and experimental approaches to evaluate the structural, electronic, optical, and electrical properties of CsPbX3 microcrystals. The microcrystals are synthesized successfully using the hydrothermal method without surfactants. This synthetic approach also offers an easy upscaling for perovskite-related material synthesis from low-cost precursors. Lastly, in this direction, we believe that deeper mechanistic studies, based on the synergy between theory and practice, can guide the discovery and development of new advanced materials with highly tailored properties for applications in optoelectronic devices, as well as other emergent technologies.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic, Structural, Optical, and Electrical Properties of CsPbX3 Powders (X = Cl, Br, and I) Prepared Using a Surfactant-Free Hydrothermal Approach\",\"authors\":\"C. Echeverría‐Arrondo, Agustin O. Alvarez, S. Masi, F. Fabregat‐Santiago, F. A. Porta\",\"doi\":\"10.3390/nanomanufacturing3020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, several strategies have been adopted for the cesium lead halide, CsPbX3 (X = Cl, Br, and/or I), crystal growth with a perovskite-type structure, paving the way for the further development of innovative optoelectronic and photovoltaic applications. The optoelectronic properties of advanced materials are controlled, in principle, by effects of morphology, particle size, structure, and composition, as well as imperfections in these parameters. Herein, we report a detailed investigation, using theoretical and experimental approaches to evaluate the structural, electronic, optical, and electrical properties of CsPbX3 microcrystals. The microcrystals are synthesized successfully using the hydrothermal method without surfactants. This synthetic approach also offers an easy upscaling for perovskite-related material synthesis from low-cost precursors. Lastly, in this direction, we believe that deeper mechanistic studies, based on the synergy between theory and practice, can guide the discovery and development of new advanced materials with highly tailored properties for applications in optoelectronic devices, as well as other emergent technologies.\",\"PeriodicalId\":52345,\"journal\":{\"name\":\"Nanomanufacturing and Metrology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomanufacturing and Metrology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/nanomanufacturing3020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomanufacturing and Metrology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/nanomanufacturing3020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Electronic, Structural, Optical, and Electrical Properties of CsPbX3 Powders (X = Cl, Br, and I) Prepared Using a Surfactant-Free Hydrothermal Approach
Recently, several strategies have been adopted for the cesium lead halide, CsPbX3 (X = Cl, Br, and/or I), crystal growth with a perovskite-type structure, paving the way for the further development of innovative optoelectronic and photovoltaic applications. The optoelectronic properties of advanced materials are controlled, in principle, by effects of morphology, particle size, structure, and composition, as well as imperfections in these parameters. Herein, we report a detailed investigation, using theoretical and experimental approaches to evaluate the structural, electronic, optical, and electrical properties of CsPbX3 microcrystals. The microcrystals are synthesized successfully using the hydrothermal method without surfactants. This synthetic approach also offers an easy upscaling for perovskite-related material synthesis from low-cost precursors. Lastly, in this direction, we believe that deeper mechanistic studies, based on the synergy between theory and practice, can guide the discovery and development of new advanced materials with highly tailored properties for applications in optoelectronic devices, as well as other emergent technologies.
期刊介绍:
Nanomanufacturing and Metrology is a peer-reviewed, international and interdisciplinary research journal and is the first journal over the world that provides a principal forum for nano-manufacturing and nano-metrology.Nanomanufacturing and Metrology publishes in the forms including original articles, cutting-edge communications, timely review papers, technical reports, and case studies. Special issues devoted to developments in important topics in nano-manufacturing and metrology will be published periodically.Nanomanufacturing and Metrology publishes articles that focus on, but are not limited to, the following areas:• Nano-manufacturing and metrology• Atomic manufacturing and metrology• Micro-manufacturing and metrology• Physics, chemistry, and materials in micro-manufacturing, nano-manufacturing, and atomic manufacturing• Tools and processes for micro-manufacturing, nano-manufacturing and atomic manufacturing