{"title":"伽马辐射技术:挑战和未来展望","authors":"A. K. Kohli","doi":"10.13189/ujpa.2018.120303","DOIUrl":null,"url":null,"abstract":"The gamma irradiator technology has served the radiation processing industry very well. It has continued to progress despite number of challenges it has faced. Number of improvements in safety features helped it to quell the earlier challenges. Later 60 Co shortages and accelerator based X-ray systems becoming more competitive, considerably halted growth of gamma irradiators. But higher running expenditure, non-availability of appropriate irradiation volumes and reliable power supply at places particularly in rural areas did not make them as an automatic choice. The recent challenge due to heightened security concerns because of presence of intense 60 Co radioactive sources in gamma irradiators is quite daunting. Possibility of theft, or attack on gamma irradiator itself or transport container and high decommissioning costs for return of sources to the supplier for safe disposal is making it difficult for gamma irradiator technology to compete. Due to some inherent advantages, X-ray based technology has made the road ahead tough for gamma irradiator technology. However, X-ray system's lower efficiency of conversion of energy to electromagnetic radiation, its higher maintenance costs and its huge dependence on availability of economic and reliable power supply will eventually decide the time at which it replaces the gamma irradiator technology fully in any part of the world.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gamma Irradiator Technology: Challenges and Future Prospects\",\"authors\":\"A. K. Kohli\",\"doi\":\"10.13189/ujpa.2018.120303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gamma irradiator technology has served the radiation processing industry very well. It has continued to progress despite number of challenges it has faced. Number of improvements in safety features helped it to quell the earlier challenges. Later 60 Co shortages and accelerator based X-ray systems becoming more competitive, considerably halted growth of gamma irradiators. But higher running expenditure, non-availability of appropriate irradiation volumes and reliable power supply at places particularly in rural areas did not make them as an automatic choice. The recent challenge due to heightened security concerns because of presence of intense 60 Co radioactive sources in gamma irradiators is quite daunting. Possibility of theft, or attack on gamma irradiator itself or transport container and high decommissioning costs for return of sources to the supplier for safe disposal is making it difficult for gamma irradiator technology to compete. Due to some inherent advantages, X-ray based technology has made the road ahead tough for gamma irradiator technology. However, X-ray system's lower efficiency of conversion of energy to electromagnetic radiation, its higher maintenance costs and its huge dependence on availability of economic and reliable power supply will eventually decide the time at which it replaces the gamma irradiator technology fully in any part of the world.\",\"PeriodicalId\":23443,\"journal\":{\"name\":\"Universal Journal of Physics and Application\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Physics and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/ujpa.2018.120303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Physics and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujpa.2018.120303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gamma Irradiator Technology: Challenges and Future Prospects
The gamma irradiator technology has served the radiation processing industry very well. It has continued to progress despite number of challenges it has faced. Number of improvements in safety features helped it to quell the earlier challenges. Later 60 Co shortages and accelerator based X-ray systems becoming more competitive, considerably halted growth of gamma irradiators. But higher running expenditure, non-availability of appropriate irradiation volumes and reliable power supply at places particularly in rural areas did not make them as an automatic choice. The recent challenge due to heightened security concerns because of presence of intense 60 Co radioactive sources in gamma irradiators is quite daunting. Possibility of theft, or attack on gamma irradiator itself or transport container and high decommissioning costs for return of sources to the supplier for safe disposal is making it difficult for gamma irradiator technology to compete. Due to some inherent advantages, X-ray based technology has made the road ahead tough for gamma irradiator technology. However, X-ray system's lower efficiency of conversion of energy to electromagnetic radiation, its higher maintenance costs and its huge dependence on availability of economic and reliable power supply will eventually decide the time at which it replaces the gamma irradiator technology fully in any part of the world.