大麦哲伦星云(LMC)星团的识别方法

P. K. Nayak, A. Subramaniam
{"title":"大麦哲伦星云(LMC)星团的识别方法","authors":"P. K. Nayak, A. Subramaniam","doi":"10.12723/MJS.44.6","DOIUrl":null,"url":null,"abstract":"The Large Magellanic Cloud (LMC) hosts a few thousand star clusters which are ideal tools to study stellar evolution, star formation history, cluster formation and dissolution processes in the galaxy. Although many surveys (like IRSF, OGLE II etc) of the LMC have been carried out, a large fraction of clusters, mainly poor ones are yet to be identified. Also, the parameters of already identified clusters are not well studied. In this context, we have  tried to explore that among the available and upcoming surveys which survey (optical/NIR) can be used to efficiently detect and study the clusters in the LMC. We have found that the available OGLE-III optical data is ideal for this purpose, but only for young clusters, whereas Deeper optical data from DECAM survey, OGLE-IV and skymapper are ideal to study poor and old clusters. We have also found that one can combine  the ongoing VISTA data with upcoming optical data (OGLE IV) and estimate the cluster parameters more accurately.","PeriodicalId":18050,"journal":{"name":"Mapana Journal of Sciences","volume":"29 1","pages":"57-73"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methods to Identify Star Clusters in The Large Magellanic Cloud (LMC)\",\"authors\":\"P. K. Nayak, A. Subramaniam\",\"doi\":\"10.12723/MJS.44.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Large Magellanic Cloud (LMC) hosts a few thousand star clusters which are ideal tools to study stellar evolution, star formation history, cluster formation and dissolution processes in the galaxy. Although many surveys (like IRSF, OGLE II etc) of the LMC have been carried out, a large fraction of clusters, mainly poor ones are yet to be identified. Also, the parameters of already identified clusters are not well studied. In this context, we have  tried to explore that among the available and upcoming surveys which survey (optical/NIR) can be used to efficiently detect and study the clusters in the LMC. We have found that the available OGLE-III optical data is ideal for this purpose, but only for young clusters, whereas Deeper optical data from DECAM survey, OGLE-IV and skymapper are ideal to study poor and old clusters. We have also found that one can combine  the ongoing VISTA data with upcoming optical data (OGLE IV) and estimate the cluster parameters more accurately.\",\"PeriodicalId\":18050,\"journal\":{\"name\":\"Mapana Journal of Sciences\",\"volume\":\"29 1\",\"pages\":\"57-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mapana Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12723/MJS.44.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mapana Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12723/MJS.44.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大麦哲伦星云(LMC)拥有数千个星团,是研究星系中恒星演化、恒星形成历史、星团形成和解散过程的理想工具。尽管已经开展了许多LMC的调查(如IRSF, OGLE II等),但仍有很大一部分集群,主要是较差的集群尚未确定。此外,已经确定的群集的参数没有得到很好的研究。在此背景下,我们试图探索在现有的和即将进行的调查中,哪些调查(光学/近红外)可以用来有效地检测和研究LMC中的星团。我们发现现有的OGLE-III光学数据对于这一目的是理想的,但仅限于年轻的星团,而来自DECAM调查,OGLE-IV和skyymapper的更深层光学数据对于研究贫穷和年老的星团是理想的。我们还发现,将正在进行的VISTA数据与即将进行的光学数据(OGLE IV)结合起来,可以更准确地估计聚类参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods to Identify Star Clusters in The Large Magellanic Cloud (LMC)
The Large Magellanic Cloud (LMC) hosts a few thousand star clusters which are ideal tools to study stellar evolution, star formation history, cluster formation and dissolution processes in the galaxy. Although many surveys (like IRSF, OGLE II etc) of the LMC have been carried out, a large fraction of clusters, mainly poor ones are yet to be identified. Also, the parameters of already identified clusters are not well studied. In this context, we have  tried to explore that among the available and upcoming surveys which survey (optical/NIR) can be used to efficiently detect and study the clusters in the LMC. We have found that the available OGLE-III optical data is ideal for this purpose, but only for young clusters, whereas Deeper optical data from DECAM survey, OGLE-IV and skymapper are ideal to study poor and old clusters. We have also found that one can combine  the ongoing VISTA data with upcoming optical data (OGLE IV) and estimate the cluster parameters more accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On D-distance and D-closed Graphs Distance Pattern Distinguishing Coloring of Graphs Possible Alternate Scenario for short Duration GRBs invoking Dark Matter Objects Comparative analysis of larvicidal efficacy of Silver and Copper nanoparticles synthesized leaf extract of Ocimum basilicum against Epilachna vigintioctopunctata Stability analysis of visco-elastically damped structure through Bagley Torvik Equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1