Sandy Danielle Lucindo Gomes, Maria Rosiene Antunes Arcanjo, Francisca Raysse Mesquita Silva, Luzia Kalyne Almeida Moreira Leal, Ana Paula Rosifini Alves Claro, Ketul Popat, Rodrigo Silveira Vieira
{"title":"不锈钢和钛合金包覆硫酸壳聚糖,改善血液相容性","authors":"Sandy Danielle Lucindo Gomes, Maria Rosiene Antunes Arcanjo, Francisca Raysse Mesquita Silva, Luzia Kalyne Almeida Moreira Leal, Ana Paula Rosifini Alves Claro, Ketul Popat, Rodrigo Silveira Vieira","doi":"10.1007/s44164-023-00044-1","DOIUrl":null,"url":null,"abstract":"<p><p>The main drawbacks of blood-contacting metallic devices are corrosion and thrombus formation on the surface, so polymeric coatings have been proposed to improve its hemocompatibility. Sulfated chitosan (SC) was obtained from natural chitosan (NC) reaction with chlorosulfonic acid to be used as a coating for metallic surfaces. The sulfated chitosan showed no platelet aggregation, an extended clotting time, and non-toxicity to rat fibroblast L929 cells. In this study, stainless steel (SS) and titanium alloys modified with TiO<sub>2</sub> nanotube (NTT) growth received a NC and SC coating. The titanium surface coated with sulfated chitosan presented the lowest percentage of platelet coverage area. Sulfated chitosan proved to be a promising material for use as a coating for metallic surfaces applied for cardiovascular devices.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"3 1","pages":"171-179"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756441/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stainless steel and titanium alloys coated with sulfated chitosan to improve hemocompatibility properties.\",\"authors\":\"Sandy Danielle Lucindo Gomes, Maria Rosiene Antunes Arcanjo, Francisca Raysse Mesquita Silva, Luzia Kalyne Almeida Moreira Leal, Ana Paula Rosifini Alves Claro, Ketul Popat, Rodrigo Silveira Vieira\",\"doi\":\"10.1007/s44164-023-00044-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The main drawbacks of blood-contacting metallic devices are corrosion and thrombus formation on the surface, so polymeric coatings have been proposed to improve its hemocompatibility. Sulfated chitosan (SC) was obtained from natural chitosan (NC) reaction with chlorosulfonic acid to be used as a coating for metallic surfaces. The sulfated chitosan showed no platelet aggregation, an extended clotting time, and non-toxicity to rat fibroblast L929 cells. In this study, stainless steel (SS) and titanium alloys modified with TiO<sub>2</sub> nanotube (NTT) growth received a NC and SC coating. The titanium surface coated with sulfated chitosan presented the lowest percentage of platelet coverage area. Sulfated chitosan proved to be a promising material for use as a coating for metallic surfaces applied for cardiovascular devices.</p>\",\"PeriodicalId\":73357,\"journal\":{\"name\":\"In vitro models\",\"volume\":\"3 1\",\"pages\":\"171-179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756441/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In vitro models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44164-023-00044-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-023-00044-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Stainless steel and titanium alloys coated with sulfated chitosan to improve hemocompatibility properties.
The main drawbacks of blood-contacting metallic devices are corrosion and thrombus formation on the surface, so polymeric coatings have been proposed to improve its hemocompatibility. Sulfated chitosan (SC) was obtained from natural chitosan (NC) reaction with chlorosulfonic acid to be used as a coating for metallic surfaces. The sulfated chitosan showed no platelet aggregation, an extended clotting time, and non-toxicity to rat fibroblast L929 cells. In this study, stainless steel (SS) and titanium alloys modified with TiO2 nanotube (NTT) growth received a NC and SC coating. The titanium surface coated with sulfated chitosan presented the lowest percentage of platelet coverage area. Sulfated chitosan proved to be a promising material for use as a coating for metallic surfaces applied for cardiovascular devices.