{"title":"经导管二尖瓣置换术中猪心包组织小叶的计算机模拟","authors":"R. Jeevan, B. M. Murari","doi":"10.4015/s101623722350014x","DOIUrl":null,"url":null,"abstract":"Tissue valve in combination with a mechanical valve is predominantly used in stented valvular prostheses. Porcine pericardium (PP) is a promising xenograft in addition to the predominately used porcine aortic valve (PAV) and bovine pericardium (BP) in heart valve replacement. Tissue valves are structurally similar to the valve cusps, upon fixation they function as structural and functional units to restore the failing heart valves. In this paper, the characterization, design and performance of PP based prosthetic mitral leaflets are analyzed. Uniaxial tensile test was performed to characterize glutaraldehyde (GA)-treated PP and evaluate its mechanical properties. Finite element methods were instrumental to design and analyze the performance of PP leaflets. Different geometric parameters were analyzed to obtain ideal valve performance. Since geometrical parameters influence valve performance, two leaflet models of trileaflet and quadrileaflet configuration were studied. BP and PAV leaflet models were designed and analyzed as controls to compare the performance of PP. The stress distribution, bending momentum and coaptation pattern from the finite element determine the performance of the geometrical models. PP exhibited anisotropy, promising tensile strength and pliability. A thinner porcine pericardium with promising tensile strength and pliability is ideal for the development of low-profile prosthetic valves. The quadrileaflet model exhibited.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"81 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IN SILICO MODELING OF PORCINE PERICARDIAL TISSUE LEAFLETS FOR TRANSCATHETER MITRAL VALVE REPLACEMENT\",\"authors\":\"R. Jeevan, B. M. Murari\",\"doi\":\"10.4015/s101623722350014x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue valve in combination with a mechanical valve is predominantly used in stented valvular prostheses. Porcine pericardium (PP) is a promising xenograft in addition to the predominately used porcine aortic valve (PAV) and bovine pericardium (BP) in heart valve replacement. Tissue valves are structurally similar to the valve cusps, upon fixation they function as structural and functional units to restore the failing heart valves. In this paper, the characterization, design and performance of PP based prosthetic mitral leaflets are analyzed. Uniaxial tensile test was performed to characterize glutaraldehyde (GA)-treated PP and evaluate its mechanical properties. Finite element methods were instrumental to design and analyze the performance of PP leaflets. Different geometric parameters were analyzed to obtain ideal valve performance. Since geometrical parameters influence valve performance, two leaflet models of trileaflet and quadrileaflet configuration were studied. BP and PAV leaflet models were designed and analyzed as controls to compare the performance of PP. The stress distribution, bending momentum and coaptation pattern from the finite element determine the performance of the geometrical models. PP exhibited anisotropy, promising tensile strength and pliability. A thinner porcine pericardium with promising tensile strength and pliability is ideal for the development of low-profile prosthetic valves. The quadrileaflet model exhibited.\",\"PeriodicalId\":8862,\"journal\":{\"name\":\"Biomedical Engineering: Applications, Basis and Communications\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering: Applications, Basis and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4015/s101623722350014x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s101623722350014x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
IN SILICO MODELING OF PORCINE PERICARDIAL TISSUE LEAFLETS FOR TRANSCATHETER MITRAL VALVE REPLACEMENT
Tissue valve in combination with a mechanical valve is predominantly used in stented valvular prostheses. Porcine pericardium (PP) is a promising xenograft in addition to the predominately used porcine aortic valve (PAV) and bovine pericardium (BP) in heart valve replacement. Tissue valves are structurally similar to the valve cusps, upon fixation they function as structural and functional units to restore the failing heart valves. In this paper, the characterization, design and performance of PP based prosthetic mitral leaflets are analyzed. Uniaxial tensile test was performed to characterize glutaraldehyde (GA)-treated PP and evaluate its mechanical properties. Finite element methods were instrumental to design and analyze the performance of PP leaflets. Different geometric parameters were analyzed to obtain ideal valve performance. Since geometrical parameters influence valve performance, two leaflet models of trileaflet and quadrileaflet configuration were studied. BP and PAV leaflet models were designed and analyzed as controls to compare the performance of PP. The stress distribution, bending momentum and coaptation pattern from the finite element determine the performance of the geometrical models. PP exhibited anisotropy, promising tensile strength and pliability. A thinner porcine pericardium with promising tensile strength and pliability is ideal for the development of low-profile prosthetic valves. The quadrileaflet model exhibited.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.