原料杂质对乙烷氧化脱氢V-Mo-Nb-Te-Ox催化剂活性和选择性的影响

E. D. Finashina, A. Kucherov, L. Kustov, Haiyong Cai, A. Krzywicki
{"title":"原料杂质对乙烷氧化脱氢V-Mo-Nb-Te-Ox催化剂活性和选择性的影响","authors":"E. D. Finashina, A. Kucherov, L. Kustov, Haiyong Cai, A. Krzywicki","doi":"10.1515/jaots-2016-0165","DOIUrl":null,"url":null,"abstract":"Abstract The effect of CH4, C2H4, CO2, CH3OH, and (CH3S)2 on activity and selectivity of V-Mo-Nb-Te-Ox catalyst for ethane oxidative dehydrogenation is studied. Methane acts as a chemically inert diluent of the gas mixture. Presence of ethylene in feed stream does not have significant effect on the rate of ethane dehydrogenation but causes slight drop in ethylene selectivity. CO2 added is not involved in chemical transformations but suppress slightly ethane conversion and selectivity. Contamination of the gas stream with small amounts of either methanol or dimethyldisulfide (DMDS) does not reduce either activity or selectivity of the catalyst in ethane oxidative dehydrogenation.","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation\",\"authors\":\"E. D. Finashina, A. Kucherov, L. Kustov, Haiyong Cai, A. Krzywicki\",\"doi\":\"10.1515/jaots-2016-0165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The effect of CH4, C2H4, CO2, CH3OH, and (CH3S)2 on activity and selectivity of V-Mo-Nb-Te-Ox catalyst for ethane oxidative dehydrogenation is studied. Methane acts as a chemically inert diluent of the gas mixture. Presence of ethylene in feed stream does not have significant effect on the rate of ethane dehydrogenation but causes slight drop in ethylene selectivity. CO2 added is not involved in chemical transformations but suppress slightly ethane conversion and selectivity. Contamination of the gas stream with small amounts of either methanol or dimethyldisulfide (DMDS) does not reduce either activity or selectivity of the catalyst in ethane oxidative dehydrogenation.\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2016-0165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2

摘要

摘要研究了CH4、C2H4、CO2、CH3OH和(CH3S)2对乙烷氧化脱氢V-Mo-Nb-Te-Ox催化剂活性和选择性的影响。甲烷作为气体混合物的化学惰性稀释剂。进料流中乙烯的存在对乙烷脱氢速率没有显著影响,但使乙烯选择性略有下降。加入的CO2不参与化学转化,但对乙烷转化和选择性有轻微抑制作用。用少量甲醇或二甲二硫(DMDS)污染气流不会降低乙烷氧化脱氢催化剂的活性或选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
Abstract The effect of CH4, C2H4, CO2, CH3OH, and (CH3S)2 on activity and selectivity of V-Mo-Nb-Te-Ox catalyst for ethane oxidative dehydrogenation is studied. Methane acts as a chemically inert diluent of the gas mixture. Presence of ethylene in feed stream does not have significant effect on the rate of ethane dehydrogenation but causes slight drop in ethylene selectivity. CO2 added is not involved in chemical transformations but suppress slightly ethane conversion and selectivity. Contamination of the gas stream with small amounts of either methanol or dimethyldisulfide (DMDS) does not reduce either activity or selectivity of the catalyst in ethane oxidative dehydrogenation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.88
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs
期刊最新文献
Catalytic Ozonation of Ciprofloxacin over Cerium Oxide Modified SBA-15 and Toxicity Assessment towards E. coli Degradation of C.I. Acid Red 51 and C.I. Acid Blue 74 in Aqueous Solution by Combination of Hydrogen Peroxide, Nanocrystallite Zinc Oxide and Ultrasound Irradiation Degradation of Cyanide using Stabilized S, N-TiO2 Nanoparticles by Visible and Sun Light Environmental Matrix Effects on Degradation Kinetics of Ibuprofen in a UV/ Persulfate System An Overview of Ozone Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1