预测机器学习算法在预测气道管理问题中的应用

M. Senthilnathan, P. Kundra
{"title":"预测机器学习算法在预测气道管理问题中的应用","authors":"M. Senthilnathan, P. Kundra","doi":"10.4103/arwy.arwy_3_23","DOIUrl":null,"url":null,"abstract":"Machine learning is artificial intelligence (AI) which can predict the output variable with the fed input features. This allows computers to learn from experience without being programmed. The outcome variable in machine learning algorithm may be continuous variable or categorical variable. Supervised machine learning is commonly applied artificial intelligence (AI) in medical field. Decision tree, gradient boost machine (GBM) learning, extreme GBM (XGBM), Support vector machine, K nearest neighbour and multi-layer perceptron are few machine learning algorithms which are being utilised to address the classification and regression problems. Though the incidence of difficult intubation (DI) is rare, occurrence of such event in an unanticipated situation can result in development of arrhythmias due to desaturation and cardiac arrest if not intervened on time. It is preferred to choose the physical parameters that can predict the difficult airway more accurately in clinical scenario and train the algorithm rather than including all the non-specific parameters. Body mass index (BMI) [>30 kg.m-2: anticipated difficult mask ventilation (DMV), direct laryngoscopy (DL) and DI], inter-insicor distance (IID) (<2 cm: anticipated DL), modified Mallampati (MMP) (Grade 1 and 2: Ease of intubation; Grade 3 and 4: anticipated DI), temporomandibular distance (TMD) (<6.5 cm - anticipated DI), restriction of neck extension (if present: anticipated DL and DI), receded mandible (if present: anticipated DL and DI), and poor submandibular space compliance (if present: anticipated DL and DI) parameters which are used to predict DA by clinical assessment, can be used to feed to train the machine learning algorithm. Despite using these sophisticated tools, extubation may fail and patients require reintubation in ICU. It is very challenging to assess the lung compliance in spontaneously breathing patients as compliance will be overestimated due to generation of negative pressure. Cause for which patient has been placed on mechanical ventilation is resolved/resolving, BMI (>30 kg.m-2), intact sensorium (absence of delirium), absence of consolidation, absence of copious secretions, oxygenation status (PaO2/FiO2: >250), ventilation status (paCO2: 30-45 mmHg), measure of work of breathing (respiratory rate, rapid shallow breathing index), heart rate and blood pressure during spontaneous breathing trial (SBT) and diaphragmatic thickness fraction can be used as input features to predict the success of extubation in critically ill patients. With widespread utility of applications in medical fraternity, applications for prediction of difficult airway (or for weaning success) can be programmed which can be accessed by the clinicians to predict DA, thereby all the preparations for managing DA may be done to prevent adverse consequences of unanticipated difficult airway.","PeriodicalId":7848,"journal":{"name":"Airway Pharmacology and Treatment","volume":"51 1","pages":"4 - 9"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predictive machine learning algorithms in anticipating problems with airway management\",\"authors\":\"M. Senthilnathan, P. Kundra\",\"doi\":\"10.4103/arwy.arwy_3_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is artificial intelligence (AI) which can predict the output variable with the fed input features. This allows computers to learn from experience without being programmed. The outcome variable in machine learning algorithm may be continuous variable or categorical variable. Supervised machine learning is commonly applied artificial intelligence (AI) in medical field. Decision tree, gradient boost machine (GBM) learning, extreme GBM (XGBM), Support vector machine, K nearest neighbour and multi-layer perceptron are few machine learning algorithms which are being utilised to address the classification and regression problems. Though the incidence of difficult intubation (DI) is rare, occurrence of such event in an unanticipated situation can result in development of arrhythmias due to desaturation and cardiac arrest if not intervened on time. It is preferred to choose the physical parameters that can predict the difficult airway more accurately in clinical scenario and train the algorithm rather than including all the non-specific parameters. Body mass index (BMI) [>30 kg.m-2: anticipated difficult mask ventilation (DMV), direct laryngoscopy (DL) and DI], inter-insicor distance (IID) (<2 cm: anticipated DL), modified Mallampati (MMP) (Grade 1 and 2: Ease of intubation; Grade 3 and 4: anticipated DI), temporomandibular distance (TMD) (<6.5 cm - anticipated DI), restriction of neck extension (if present: anticipated DL and DI), receded mandible (if present: anticipated DL and DI), and poor submandibular space compliance (if present: anticipated DL and DI) parameters which are used to predict DA by clinical assessment, can be used to feed to train the machine learning algorithm. Despite using these sophisticated tools, extubation may fail and patients require reintubation in ICU. It is very challenging to assess the lung compliance in spontaneously breathing patients as compliance will be overestimated due to generation of negative pressure. Cause for which patient has been placed on mechanical ventilation is resolved/resolving, BMI (>30 kg.m-2), intact sensorium (absence of delirium), absence of consolidation, absence of copious secretions, oxygenation status (PaO2/FiO2: >250), ventilation status (paCO2: 30-45 mmHg), measure of work of breathing (respiratory rate, rapid shallow breathing index), heart rate and blood pressure during spontaneous breathing trial (SBT) and diaphragmatic thickness fraction can be used as input features to predict the success of extubation in critically ill patients. With widespread utility of applications in medical fraternity, applications for prediction of difficult airway (or for weaning success) can be programmed which can be accessed by the clinicians to predict DA, thereby all the preparations for managing DA may be done to prevent adverse consequences of unanticipated difficult airway.\",\"PeriodicalId\":7848,\"journal\":{\"name\":\"Airway Pharmacology and Treatment\",\"volume\":\"51 1\",\"pages\":\"4 - 9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Airway Pharmacology and Treatment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/arwy.arwy_3_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Airway Pharmacology and Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/arwy.arwy_3_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习是一种人工智能(AI),它可以根据输入特征预测输出变量。这使得计算机无需编程就能从经验中学习。机器学习算法中的结果变量可以是连续变量,也可以是分类变量。监督式机器学习是人工智能在医学领域的常用应用。决策树、梯度增强机(GBM)学习、极限GBM (XGBM)、支持向量机、K近邻和多层感知器是几种用于解决分类和回归问题的机器学习算法。虽然困难插管(DI)的发生率很低,但在意外情况下发生此类事件,如果不及时干预,可导致去饱和性心律失常和心脏骤停。在临床场景中,最好选择能够更准确预测困难气道的物理参数并对算法进行训练,而不是包括所有的非特异性参数。身体质量指数(BMI) [>30 kg]。m-2:预期困难面罩通气(DMV)、直接喉镜检查(DL)和直接喉镜检查(DI)、内腔距离(IID) (30 kg.m-2)、感觉完整(无谵妄)、无实变、无大量分泌物、氧合状态(PaO2/FiO2 >250)、通气状态(paCO2:30-45 mmHg)、呼吸功测量(呼吸频率、快速浅呼吸指数)、自主呼吸试验(SBT)时的心率和血压以及膈肌厚度分数可作为预测危重患者拔管成功率的输入特征。随着在医学界的广泛应用,预测气道困难(或脱机成功)的应用程序可以被编程,临床医生可以使用这些程序来预测DA,从而可以完成管理DA的所有准备工作,以防止意外气道困难的不良后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive machine learning algorithms in anticipating problems with airway management
Machine learning is artificial intelligence (AI) which can predict the output variable with the fed input features. This allows computers to learn from experience without being programmed. The outcome variable in machine learning algorithm may be continuous variable or categorical variable. Supervised machine learning is commonly applied artificial intelligence (AI) in medical field. Decision tree, gradient boost machine (GBM) learning, extreme GBM (XGBM), Support vector machine, K nearest neighbour and multi-layer perceptron are few machine learning algorithms which are being utilised to address the classification and regression problems. Though the incidence of difficult intubation (DI) is rare, occurrence of such event in an unanticipated situation can result in development of arrhythmias due to desaturation and cardiac arrest if not intervened on time. It is preferred to choose the physical parameters that can predict the difficult airway more accurately in clinical scenario and train the algorithm rather than including all the non-specific parameters. Body mass index (BMI) [>30 kg.m-2: anticipated difficult mask ventilation (DMV), direct laryngoscopy (DL) and DI], inter-insicor distance (IID) (<2 cm: anticipated DL), modified Mallampati (MMP) (Grade 1 and 2: Ease of intubation; Grade 3 and 4: anticipated DI), temporomandibular distance (TMD) (<6.5 cm - anticipated DI), restriction of neck extension (if present: anticipated DL and DI), receded mandible (if present: anticipated DL and DI), and poor submandibular space compliance (if present: anticipated DL and DI) parameters which are used to predict DA by clinical assessment, can be used to feed to train the machine learning algorithm. Despite using these sophisticated tools, extubation may fail and patients require reintubation in ICU. It is very challenging to assess the lung compliance in spontaneously breathing patients as compliance will be overestimated due to generation of negative pressure. Cause for which patient has been placed on mechanical ventilation is resolved/resolving, BMI (>30 kg.m-2), intact sensorium (absence of delirium), absence of consolidation, absence of copious secretions, oxygenation status (PaO2/FiO2: >250), ventilation status (paCO2: 30-45 mmHg), measure of work of breathing (respiratory rate, rapid shallow breathing index), heart rate and blood pressure during spontaneous breathing trial (SBT) and diaphragmatic thickness fraction can be used as input features to predict the success of extubation in critically ill patients. With widespread utility of applications in medical fraternity, applications for prediction of difficult airway (or for weaning success) can be programmed which can be accessed by the clinicians to predict DA, thereby all the preparations for managing DA may be done to prevent adverse consequences of unanticipated difficult airway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of C-MACTM videolaryngoscope with Macintosh Laryngoscope in anticipated difficult airway: A randomised controlled trial Management of a case of tracheal tumour causing near total airway obstruction Vie scope: A novel device in airway management Mechanics and dynamics of the pharynx: An insight into pharyngeal collapse Airway management in tracheal resection and anastomosis – Challenges and novel solutions!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1