分类裂缝定向建模:应用于伊朗某油田

Q4 Earth and Planetary Sciences International Journal of Mining and Geo-Engineering Pub Date : 2017-12-01 DOI:10.22059/IJMGE.2017.64323
M. Ostad, O. Asghari, A. Rafiee, M. Azizzadeh, F. Khoshbakht
{"title":"分类裂缝定向建模:应用于伊朗某油田","authors":"M. Ostad, O. Asghari, A. Rafiee, M. Azizzadeh, F. Khoshbakht","doi":"10.22059/IJMGE.2017.64323","DOIUrl":null,"url":null,"abstract":"Fracture orientation is a prominent factor in determining the reservoir fluid flow direction in a formation because fractures are the major paths through which fluid flow occurs. Hence, a true modeling of orientation leads to a reliable prediction of fluid flow. Traditionally, various distributions are used for orientation modeling in fracture networks. Although they offer a fairly suitable estimation of fracture orientation, they would not consider any spatial structure for simulated fracture orientations, and would not able to properly reproduce the histograms, and the stereogram of dip and azimuth. To respect this geostatistical and statistical parameters, in this paper a new approach has been presented in which the observed fractures on the image log are firstly clustered, and the major facture families are categorically simulated over the area of study. Afterwards, azimuths are simulated using the probability field obtained from categorical simulation, and dips are conditionally simulated to azimuths. The method is illustrated through a case and the results show that the histograms and stereograms are completely reproduced. In addition, the connectivity of modeled fracture network using the presented method is surveyed in comparison with modeled fracture network using Kent distribution.","PeriodicalId":36564,"journal":{"name":"International Journal of Mining and Geo-Engineering","volume":"51 1","pages":"139-146"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Categorical fracture orientation modeling: applied to an Iranian oil field\",\"authors\":\"M. Ostad, O. Asghari, A. Rafiee, M. Azizzadeh, F. Khoshbakht\",\"doi\":\"10.22059/IJMGE.2017.64323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fracture orientation is a prominent factor in determining the reservoir fluid flow direction in a formation because fractures are the major paths through which fluid flow occurs. Hence, a true modeling of orientation leads to a reliable prediction of fluid flow. Traditionally, various distributions are used for orientation modeling in fracture networks. Although they offer a fairly suitable estimation of fracture orientation, they would not consider any spatial structure for simulated fracture orientations, and would not able to properly reproduce the histograms, and the stereogram of dip and azimuth. To respect this geostatistical and statistical parameters, in this paper a new approach has been presented in which the observed fractures on the image log are firstly clustered, and the major facture families are categorically simulated over the area of study. Afterwards, azimuths are simulated using the probability field obtained from categorical simulation, and dips are conditionally simulated to azimuths. The method is illustrated through a case and the results show that the histograms and stereograms are completely reproduced. In addition, the connectivity of modeled fracture network using the presented method is surveyed in comparison with modeled fracture network using Kent distribution.\",\"PeriodicalId\":36564,\"journal\":{\"name\":\"International Journal of Mining and Geo-Engineering\",\"volume\":\"51 1\",\"pages\":\"139-146\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mining and Geo-Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/IJMGE.2017.64323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining and Geo-Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/IJMGE.2017.64323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

裂缝方向是决定储层流体流向的一个重要因素,因为裂缝是流体流动的主要通道。因此,正确的方位建模可以可靠地预测流体的流动。传统上,在裂缝网络中使用各种分布进行定向建模。虽然它们提供了一个相当合适的裂缝方位估计,但它们没有考虑任何空间结构来模拟裂缝方位,也不能正确地再现直方图、倾角和方位角的立体图。为了尊重这些地质统计参数,本文提出了一种新的方法,即首先对图像测井上观察到的裂缝进行聚类,并对研究区内的主要裂缝族进行分类模拟。然后,利用分类模拟得到的概率场模拟方位,并有条件地模拟倾角到方位。通过一个实例说明了该方法,结果表明,直方图和立体图得到了完整的再现。此外,利用该方法对模拟裂缝网络的连通性进行了调查,并与采用Kent分布的模拟裂缝网络进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Categorical fracture orientation modeling: applied to an Iranian oil field
Fracture orientation is a prominent factor in determining the reservoir fluid flow direction in a formation because fractures are the major paths through which fluid flow occurs. Hence, a true modeling of orientation leads to a reliable prediction of fluid flow. Traditionally, various distributions are used for orientation modeling in fracture networks. Although they offer a fairly suitable estimation of fracture orientation, they would not consider any spatial structure for simulated fracture orientations, and would not able to properly reproduce the histograms, and the stereogram of dip and azimuth. To respect this geostatistical and statistical parameters, in this paper a new approach has been presented in which the observed fractures on the image log are firstly clustered, and the major facture families are categorically simulated over the area of study. Afterwards, azimuths are simulated using the probability field obtained from categorical simulation, and dips are conditionally simulated to azimuths. The method is illustrated through a case and the results show that the histograms and stereograms are completely reproduced. In addition, the connectivity of modeled fracture network using the presented method is surveyed in comparison with modeled fracture network using Kent distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mining and Geo-Engineering
International Journal of Mining and Geo-Engineering Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Categorical fracture orientation modeling: applied to an Iranian oil field Applying an integrated fuzzy gray MCDM approach: A case study on mineral processing plant site selection DEM Analysis of Backfilled Walls Subjected to Active Translation Mode Preliminary Beneficiation and Washability Studies on Ghouzlou's Low-Ash Coal Sample Combined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1