{"title":"识别小鼠胡须 S1 和 S2 皮层之间信息传递的发育开关","authors":"Linbi Cai, Jenq-Wei Yang, Chia-Fang Wang, Shen-Ju Chou, Heiko J Luhmann, Theofanis Karayannis","doi":"10.1523/JNEUROSCI.2246-21.2022","DOIUrl":null,"url":null,"abstract":"<p><p>The whiskers of rodents are a key sensory organ that provides critical tactile information for animal navigation and object exploration throughout life. Previous work has explored the developmental sensory-driven activation of the primary sensory cortex processing whisker information (wS1), also called barrel cortex. This body of work has shown that the barrel cortex is already activated by sensory stimuli during the first postnatal week. However, it is currently unknown when over the course of development these stimuli begin being processed by higher-order cortical areas, such as secondary whisker somatosensory area (wS2). Here we investigate the developmental engagement of wS2 by whisker stimuli and the emergence of corticocortical communication from wS1 to wS2. Using <i>in vivo</i> wide-field imaging and multielectrode recordings in control and conditional KO mice of either sex with thalamocortical innervation defects, we find that wS1 and wS2 are able to process bottom-up information coming from the thalamus from birth. We also identify that it is only at the end of the first postnatal week that wS1 begins to provide functional excitation into wS2, switching to more inhibitory actions after the second postnatal week. Therefore, we have uncovered a developmental window when information transfer between wS1 and wS2 reaches mature function.<b>SIGNIFICANCE STATEMENT</b> At the end of the first postnatal week, the primary whisker somatosensory area starts providing excitatory input to the secondary whisker somatosensory area 2. This excitatory drive weakens during the second postnatal week and switches to inhibition in the adult.</p>","PeriodicalId":51485,"journal":{"name":"Economics of Innovation and New Technology","volume":"13 1","pages":"4435-4448"},"PeriodicalIF":3.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172289/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of a Developmental Switch in Information Transfer between Whisker S1 and S2 Cortex in Mice.\",\"authors\":\"Linbi Cai, Jenq-Wei Yang, Chia-Fang Wang, Shen-Ju Chou, Heiko J Luhmann, Theofanis Karayannis\",\"doi\":\"10.1523/JNEUROSCI.2246-21.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The whiskers of rodents are a key sensory organ that provides critical tactile information for animal navigation and object exploration throughout life. Previous work has explored the developmental sensory-driven activation of the primary sensory cortex processing whisker information (wS1), also called barrel cortex. This body of work has shown that the barrel cortex is already activated by sensory stimuli during the first postnatal week. However, it is currently unknown when over the course of development these stimuli begin being processed by higher-order cortical areas, such as secondary whisker somatosensory area (wS2). Here we investigate the developmental engagement of wS2 by whisker stimuli and the emergence of corticocortical communication from wS1 to wS2. Using <i>in vivo</i> wide-field imaging and multielectrode recordings in control and conditional KO mice of either sex with thalamocortical innervation defects, we find that wS1 and wS2 are able to process bottom-up information coming from the thalamus from birth. We also identify that it is only at the end of the first postnatal week that wS1 begins to provide functional excitation into wS2, switching to more inhibitory actions after the second postnatal week. Therefore, we have uncovered a developmental window when information transfer between wS1 and wS2 reaches mature function.<b>SIGNIFICANCE STATEMENT</b> At the end of the first postnatal week, the primary whisker somatosensory area starts providing excitatory input to the secondary whisker somatosensory area 2. This excitatory drive weakens during the second postnatal week and switches to inhibition in the adult.</p>\",\"PeriodicalId\":51485,\"journal\":{\"name\":\"Economics of Innovation and New Technology\",\"volume\":\"13 1\",\"pages\":\"4435-4448\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172289/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics of Innovation and New Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.2246-21.2022\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics of Innovation and New Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.2246-21.2022","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Identification of a Developmental Switch in Information Transfer between Whisker S1 and S2 Cortex in Mice.
The whiskers of rodents are a key sensory organ that provides critical tactile information for animal navigation and object exploration throughout life. Previous work has explored the developmental sensory-driven activation of the primary sensory cortex processing whisker information (wS1), also called barrel cortex. This body of work has shown that the barrel cortex is already activated by sensory stimuli during the first postnatal week. However, it is currently unknown when over the course of development these stimuli begin being processed by higher-order cortical areas, such as secondary whisker somatosensory area (wS2). Here we investigate the developmental engagement of wS2 by whisker stimuli and the emergence of corticocortical communication from wS1 to wS2. Using in vivo wide-field imaging and multielectrode recordings in control and conditional KO mice of either sex with thalamocortical innervation defects, we find that wS1 and wS2 are able to process bottom-up information coming from the thalamus from birth. We also identify that it is only at the end of the first postnatal week that wS1 begins to provide functional excitation into wS2, switching to more inhibitory actions after the second postnatal week. Therefore, we have uncovered a developmental window when information transfer between wS1 and wS2 reaches mature function.SIGNIFICANCE STATEMENT At the end of the first postnatal week, the primary whisker somatosensory area starts providing excitatory input to the secondary whisker somatosensory area 2. This excitatory drive weakens during the second postnatal week and switches to inhibition in the adult.
期刊介绍:
Economics of Innovation and New Technology is devoted to the theoretical and empirical analysis of the determinants and effects of innovation, new technology and technological knowledge. The journal aims to provide a bridge between different strands of literature and different contributions of economic theory and empirical economics. This bridge is built in two ways. First, by encouraging empirical research (including case studies, econometric work and historical research), evaluating existing economic theory, and suggesting appropriate directions for future effort in theoretical work. Second, by exploring ways of applying and testing existing areas of theory to the economics of innovation and new technology, and ways of using theoretical insights to inform data collection and other empirical research. The journal welcomes contributions across a wide range of issues concerned with innovation, including: the generation of new technological knowledge, innovation in product markets, process innovation, patenting, adoption, diffusion, innovation and technology policy, international competitiveness, standardization and network externalities, innovation and growth, technology transfer, innovation and market structure, innovation and the environment, and across a broad range of economic activity not just in ‘high technology’ areas. The journal is open to a variety of methodological approaches ranging from case studies to econometric exercises with sound theoretical modelling, empirical evidence both longitudinal and cross-sectional about technologies, regions, firms, industries and countries.