纯铜激光合金化过程中的温度分布分析

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materiali in tehnologije Pub Date : 2022-12-08 DOI:10.17222/mit.2022.551
J. Domagała-Dubiel, D. Janicki, G. Muzia, Jakub Lisicki, J. Ptaszny, J. Kulasa
{"title":"纯铜激光合金化过程中的温度分布分析","authors":"J. Domagała-Dubiel, D. Janicki, G. Muzia, Jakub Lisicki, J. Ptaszny, J. Kulasa","doi":"10.17222/mit.2022.551","DOIUrl":null,"url":null,"abstract":"In many cases, the use of copper is limited by the unsatisfactory properties of its surface layer, i.e., low hardness and wear resistance. Laser surface-layer treatment may be a better alternative to other techniques used in surface engineering intended for the elements, whose high conductivity, combined with high functional properties, is required. In the present work, laser alloying of pure copper with Ni powder is performed. Thermographic measurements during the process and measurements of the melt-pool dimensions after the alloying are performed. A 3-D model of a cylindrical specimen is developed. The enthalpy-based material model involving the phase change is applied. The nickel powder is taken into account with an appropriate value of the workpiece absorptance in the heat flux boundary condition imposed in the moving laser spot area. This study utilized the ANSYS-based Simulation software. Results of the temperature simulation show acceptable agreement with the experiment. The developed model can be used to predict the temperature distribution and identify the workpiece absorptance.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":"13 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF TEMPERATURE DISTRIBUTION IN LASER ALLOYING OF PURE COPPER\",\"authors\":\"J. Domagała-Dubiel, D. Janicki, G. Muzia, Jakub Lisicki, J. Ptaszny, J. Kulasa\",\"doi\":\"10.17222/mit.2022.551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many cases, the use of copper is limited by the unsatisfactory properties of its surface layer, i.e., low hardness and wear resistance. Laser surface-layer treatment may be a better alternative to other techniques used in surface engineering intended for the elements, whose high conductivity, combined with high functional properties, is required. In the present work, laser alloying of pure copper with Ni powder is performed. Thermographic measurements during the process and measurements of the melt-pool dimensions after the alloying are performed. A 3-D model of a cylindrical specimen is developed. The enthalpy-based material model involving the phase change is applied. The nickel powder is taken into account with an appropriate value of the workpiece absorptance in the heat flux boundary condition imposed in the moving laser spot area. This study utilized the ANSYS-based Simulation software. Results of the temperature simulation show acceptable agreement with the experiment. The developed model can be used to predict the temperature distribution and identify the workpiece absorptance.\",\"PeriodicalId\":18258,\"journal\":{\"name\":\"Materiali in tehnologije\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materiali in tehnologije\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.17222/mit.2022.551\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2022.551","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在许多情况下,铜的使用受到其表面层性能不理想的限制,即硬度低,耐磨性差。激光表面层处理可能是表面工程中使用的其他技术的更好替代方案,用于需要高导电性和高功能特性的元素。本文研究了纯铜与Ni粉末的激光合金化。进行过程中的热成像测量和合金化后熔池尺寸的测量。建立了圆柱试样的三维模型。采用了包含相变的基于焓的材料模型。在移动激光光斑区域施加的热流边界条件下,考虑了镍粉对工件吸收率的适当取值。本研究采用基于ansys的仿真软件。温度模拟结果与实验结果吻合较好。所建立的模型可用于预测温度分布和识别工件吸光度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANALYSIS OF TEMPERATURE DISTRIBUTION IN LASER ALLOYING OF PURE COPPER
In many cases, the use of copper is limited by the unsatisfactory properties of its surface layer, i.e., low hardness and wear resistance. Laser surface-layer treatment may be a better alternative to other techniques used in surface engineering intended for the elements, whose high conductivity, combined with high functional properties, is required. In the present work, laser alloying of pure copper with Ni powder is performed. Thermographic measurements during the process and measurements of the melt-pool dimensions after the alloying are performed. A 3-D model of a cylindrical specimen is developed. The enthalpy-based material model involving the phase change is applied. The nickel powder is taken into account with an appropriate value of the workpiece absorptance in the heat flux boundary condition imposed in the moving laser spot area. This study utilized the ANSYS-based Simulation software. Results of the temperature simulation show acceptable agreement with the experiment. The developed model can be used to predict the temperature distribution and identify the workpiece absorptance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materiali in tehnologije
Materiali in tehnologije 工程技术-材料科学:综合
CiteScore
1.30
自引率
0.00%
发文量
73
审稿时长
4-8 weeks
期刊介绍: The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.
期刊最新文献
SUSTAINABLE AND STRATEGIC SOFT-MAGNETIC Fe-Si-Al ALLOYS PRODUCED BY SECONDARY METALLURGY INFLUENCE OF NICKEL ON THE MICROSTRUCTURAL EVOLUTION AND MECHANICAL PROPERTIES OF LM6-ALLOY-BASED FUNCTIONALLY GRADED COMPOSITE TUBES EFFECT OF ELECTROCHEMICAL PROCESS PARAMETERS ON THE HASTELLOY C-276 ALLOY FOR MACHINING SPEED AND SURFACE-CORROSION FACTOR OPTIMUM DESIGN OF A PERMANENT-MAGNET-BASED SELF-CHARGING DEVICE FOR A SMARTPHONE EFFECT OF STEEL’S THERMAL CONDITION ON THE TRANSFORMATION TEMPERATURES OF TWO HOT-WORK TOOL STEELS WITH INCREASED THERMAL CONDUCTIVITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1