pi -微积分中并行计算复杂度的类型

IF 1.5 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Programming Languages and Systems Pub Date : 2020-10-12 DOI:10.1145/3495529
Patrick Baillot, Alexis Ghyselen
{"title":"pi -微积分中并行计算复杂度的类型","authors":"Patrick Baillot, Alexis Ghyselen","doi":"10.1145/3495529","DOIUrl":null,"url":null,"abstract":"Type systems as a technique to analyse or control programs have been extensively studied for functional programming languages. In particular, some systems allow one to extract from a typing derivation a complexity bound on the program. We explore how to extend such results to parallel complexity in the setting of pi-calculus, considered as a communication-based model for parallel computation. Two notions of time complexity are given: the total computation time without parallelism (the work) and the computation time under maximal parallelism (the span). We define operational semantics to capture those two notions and present two type systems from which one can extract a complexity bound on a process. The type systems are inspired both by sized types and by input/output types, with additional temporal information about communications.","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"12 1","pages":"59 - 86"},"PeriodicalIF":1.5000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Types for Complexity of Parallel Computation in Pi-Calculus\",\"authors\":\"Patrick Baillot, Alexis Ghyselen\",\"doi\":\"10.1145/3495529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Type systems as a technique to analyse or control programs have been extensively studied for functional programming languages. In particular, some systems allow one to extract from a typing derivation a complexity bound on the program. We explore how to extend such results to parallel complexity in the setting of pi-calculus, considered as a communication-based model for parallel computation. Two notions of time complexity are given: the total computation time without parallelism (the work) and the computation time under maximal parallelism (the span). We define operational semantics to capture those two notions and present two type systems from which one can extract a complexity bound on a process. The type systems are inspired both by sized types and by input/output types, with additional temporal information about communications.\",\"PeriodicalId\":50939,\"journal\":{\"name\":\"ACM Transactions on Programming Languages and Systems\",\"volume\":\"12 1\",\"pages\":\"59 - 86\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Programming Languages and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3495529\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3495529","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 6

摘要

类型系统作为一种分析或控制程序的技术,在函数式编程语言中得到了广泛的研究。特别是,有些系统允许从类型派生中提取程序的复杂性界限。我们探讨了如何将这些结果扩展到pi微积分的并行复杂性,pi微积分被认为是并行计算的一种基于通信的模型。给出了时间复杂度的两个概念:不并行的总计算时间(功)和最大并行下的计算时间(跨度)。我们定义了操作语义来捕获这两个概念,并提供了两种类型系统,人们可以从中提取流程的复杂性界限。类型系统的灵感来自大小类型和输入/输出类型,以及关于通信的额外临时信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Types for Complexity of Parallel Computation in Pi-Calculus
Type systems as a technique to analyse or control programs have been extensively studied for functional programming languages. In particular, some systems allow one to extract from a typing derivation a complexity bound on the program. We explore how to extend such results to parallel complexity in the setting of pi-calculus, considered as a communication-based model for parallel computation. Two notions of time complexity are given: the total computation time without parallelism (the work) and the computation time under maximal parallelism (the span). We define operational semantics to capture those two notions and present two type systems from which one can extract a complexity bound on a process. The type systems are inspired both by sized types and by input/output types, with additional temporal information about communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Programming Languages and Systems
ACM Transactions on Programming Languages and Systems 工程技术-计算机:软件工程
CiteScore
3.10
自引率
7.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects: language design for sequential and parallel programming programming language implementation programming language semantics compilers and interpreters runtime systems for program execution storage allocation and garbage collection languages and methods for writing program specifications languages and methods for secure and reliable programs testing and verification of programs
期刊最新文献
Proving Correctness of Parallel Implementations of Transition System Models CFLOBDDs: Context-Free-Language Ordered Binary Decision Diagrams Adversities in Abstract Interpretation: Accommodating Robustness by Abstract Interpretation: ACM Transactions on Programming Languages and Systems: Vol 0, No ja Homeostasis: Design and Implementation of a Self-Stabilizing Compiler Locally Abstract, Globally Concrete Semantics of Concurrent Programming Languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1