基于人工智能的乳腺肿块良恶性鉴别处理中图像质量差异对CAD性能的影响分析

Kazuya Abe, Soma Kudo, Hideya Takeo, Yuichi Nagai, S. Nawano
{"title":"基于人工智能的乳腺肿块良恶性鉴别处理中图像质量差异对CAD性能的影响分析","authors":"Kazuya Abe, Soma Kudo, Hideya Takeo, Yuichi Nagai, S. Nawano","doi":"10.1117/12.2623398","DOIUrl":null,"url":null,"abstract":"In recent years, the amount of images to be read has increased due to the higher resolution of diagnostic imaging devices, and the burden on doctors has also increased. To solve this problem, the improvement of CAD (computer-aided diagnosis) performance has been studied. In this study, we developed an AI-based system for discriminating benign and malignant breast cancer tumors using transfer learning, one of the deep learning methods of AI, and analyzed what factors are necessary to improve the diagnostic accuracy of the system. Classification of benign and malignant diseases using diagnostic images showed an accuracy of 90%, which was equivalent to physician's discrimination, but the accuracy for medical checkup images was low at 85%, and image comparison revealed that this was due to noise and low contrast. We analyzed that these improvements are necessary for the construction of a more accurate CAD system for medical checkup images.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"24 1","pages":"122860R - 122860R-8"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the effects of image quality differences on CAD performance in AI-based benign-malignant discrimination processing of breast masses\",\"authors\":\"Kazuya Abe, Soma Kudo, Hideya Takeo, Yuichi Nagai, S. Nawano\",\"doi\":\"10.1117/12.2623398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the amount of images to be read has increased due to the higher resolution of diagnostic imaging devices, and the burden on doctors has also increased. To solve this problem, the improvement of CAD (computer-aided diagnosis) performance has been studied. In this study, we developed an AI-based system for discriminating benign and malignant breast cancer tumors using transfer learning, one of the deep learning methods of AI, and analyzed what factors are necessary to improve the diagnostic accuracy of the system. Classification of benign and malignant diseases using diagnostic images showed an accuracy of 90%, which was equivalent to physician's discrimination, but the accuracy for medical checkup images was low at 85%, and image comparison revealed that this was due to noise and low contrast. We analyzed that these improvements are necessary for the construction of a more accurate CAD system for medical checkup images.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"24 1\",\"pages\":\"122860R - 122860R-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2623398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2623398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于诊断成像设备分辨率的提高,需要读取的图像数量增加,医生的负担也随之增加。为了解决这一问题,对计算机辅助诊断(CAD)性能的改进进行了研究。在本研究中,我们利用人工智能的深度学习方法之一迁移学习,开发了一个基于人工智能的乳腺癌良恶性肿瘤鉴别系统,并分析了需要哪些因素来提高系统的诊断准确性。诊断图像对良恶性疾病的分类准确率为90%,与医生的判别相当,但体检图像的准确率较低,为85%,对比图像发现,这是由于噪声和低对比度造成的。我们分析了这些改进对于构建更精确的医学体检图像CAD系统是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the effects of image quality differences on CAD performance in AI-based benign-malignant discrimination processing of breast masses
In recent years, the amount of images to be read has increased due to the higher resolution of diagnostic imaging devices, and the burden on doctors has also increased. To solve this problem, the improvement of CAD (computer-aided diagnosis) performance has been studied. In this study, we developed an AI-based system for discriminating benign and malignant breast cancer tumors using transfer learning, one of the deep learning methods of AI, and analyzed what factors are necessary to improve the diagnostic accuracy of the system. Classification of benign and malignant diseases using diagnostic images showed an accuracy of 90%, which was equivalent to physician's discrimination, but the accuracy for medical checkup images was low at 85%, and image comparison revealed that this was due to noise and low contrast. We analyzed that these improvements are necessary for the construction of a more accurate CAD system for medical checkup images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness of a U-net model for different image processing types in segmentation of the mammary gland region Lesion detection in contrast enhanced spectral mammography Correspondence between areas causing recall in breast cancer screening and artificial intelligence findings Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge Breast shape estimation and correction in CESM biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1