{"title":"碳氮化pm钢的相变塑性:零件密度对塑性影响的量化*","authors":"J. Damon, S. Dietrich, V. Schulze","doi":"10.1515/htm-2021-0021","DOIUrl":null,"url":null,"abstract":"Abstract To optimize heat treatment processes of case hardened components, heat treatment simulations are used to predict surface layer conditions. Only a precise knowledge and modelling of the transformation processes allows a trustworthy prediction of the hardness and residual stresses in the surface zone. The transformation plasticity mechanism plays an essential role in the heat treatment process and its correct simulation has a significant influence on the resulting calculated residual stress profiles and component distortion. Without considering transformation plasticity, simulative residual stresses are significantly overestimated [1]. In this work, powder metallurgical components are pressed and sintered and subsequently carbonitrided for a dilatometric investigation to characterize the correlation between transformation plasticity effect and the density. The results show a dependence of the austenite-martensite volume change that led to a significant difference of 0.5 Vol-%. A model describing the martensite volume change with respect to density is proposed. This also affects the description of the transformation plasticity constants (K) between K = 5 – 6 × 10–5 MPa–1 in dependence of density. With currently available data, the effect of chemical composition and density cannot be separated and quantified and further studies are therefore necessary to allow such a refinement.","PeriodicalId":44294,"journal":{"name":"HTM-Journal of Heat Treatment and Materials","volume":"76 1","pages":"458 - 477"},"PeriodicalIF":0.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformation Plasticity in Carbonitrided PM-Steels: Quantification of Plasticity Effects in Dependence of the Part Density*\",\"authors\":\"J. Damon, S. Dietrich, V. Schulze\",\"doi\":\"10.1515/htm-2021-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To optimize heat treatment processes of case hardened components, heat treatment simulations are used to predict surface layer conditions. Only a precise knowledge and modelling of the transformation processes allows a trustworthy prediction of the hardness and residual stresses in the surface zone. The transformation plasticity mechanism plays an essential role in the heat treatment process and its correct simulation has a significant influence on the resulting calculated residual stress profiles and component distortion. Without considering transformation plasticity, simulative residual stresses are significantly overestimated [1]. In this work, powder metallurgical components are pressed and sintered and subsequently carbonitrided for a dilatometric investigation to characterize the correlation between transformation plasticity effect and the density. The results show a dependence of the austenite-martensite volume change that led to a significant difference of 0.5 Vol-%. A model describing the martensite volume change with respect to density is proposed. This also affects the description of the transformation plasticity constants (K) between K = 5 – 6 × 10–5 MPa–1 in dependence of density. With currently available data, the effect of chemical composition and density cannot be separated and quantified and further studies are therefore necessary to allow such a refinement.\",\"PeriodicalId\":44294,\"journal\":{\"name\":\"HTM-Journal of Heat Treatment and Materials\",\"volume\":\"76 1\",\"pages\":\"458 - 477\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HTM-Journal of Heat Treatment and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/htm-2021-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HTM-Journal of Heat Treatment and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/htm-2021-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Transformation Plasticity in Carbonitrided PM-Steels: Quantification of Plasticity Effects in Dependence of the Part Density*
Abstract To optimize heat treatment processes of case hardened components, heat treatment simulations are used to predict surface layer conditions. Only a precise knowledge and modelling of the transformation processes allows a trustworthy prediction of the hardness and residual stresses in the surface zone. The transformation plasticity mechanism plays an essential role in the heat treatment process and its correct simulation has a significant influence on the resulting calculated residual stress profiles and component distortion. Without considering transformation plasticity, simulative residual stresses are significantly overestimated [1]. In this work, powder metallurgical components are pressed and sintered and subsequently carbonitrided for a dilatometric investigation to characterize the correlation between transformation plasticity effect and the density. The results show a dependence of the austenite-martensite volume change that led to a significant difference of 0.5 Vol-%. A model describing the martensite volume change with respect to density is proposed. This also affects the description of the transformation plasticity constants (K) between K = 5 – 6 × 10–5 MPa–1 in dependence of density. With currently available data, the effect of chemical composition and density cannot be separated and quantified and further studies are therefore necessary to allow such a refinement.