Isaac Rudich, Quentin Cappart, Louis-Martin Rousseau
{"title":"改进的剥离定界:多值决策图的对偶界生成方法","authors":"Isaac Rudich, Quentin Cappart, Louis-Martin Rousseau","doi":"10.1613/jair.1.14607","DOIUrl":null,"url":null,"abstract":"Decision diagrams are an increasingly important tool in cutting-edge solvers for discrete optimization. However, the field of decision diagrams is relatively new, and is still incorporating the library of techniques that conventional solvers have had decades to build. We drew inspiration from the warm-start technique used in conventional solvers to address one of the major challenges faced by decision diagram based methods. Decision diagrams become more useful the wider they are allowed to be, but also become more costly to generate, especially with large numbers of variables. In the original version of this paper, we presented a method of peeling off a sub-graph of previously constructed diagrams and using it as the initial diagram for subsequent iterations that we call peel-and-bound. We tested the method on the sequence ordering problem, and our results indicate that our peel-and-bound scheme generates stronger bounds than a branch-and-bound scheme using the same propagators, and at significantly less computational cost. In this extended version of the paper, we also propose new methods for using relaxed decision diagrams to improve the solutions found using restricted decision diagrams, discuss the heuristic decisions involved with the parallelization of peel-and-bound, and discuss how peel-and-bound can be hyper-optimized for sequencing problems. Furthermore, we test the new methods on the sequence ordering problem and the traveling salesman problem with time-windows (TSPTW), and include an updated and generalized implementation of the algorithm capable of handling any discrete optimization problem. The new results show that peel-and-bound outperforms ddo (a decision diagram based branch-and-bound solver) on the TSPTW. We also close 15 open benchmark instances of the TSPTW.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"72 1","pages":"1489-1538"},"PeriodicalIF":4.5000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Peel-and-Bound: Methods for Generating Dual Bounds with Multivalued Decision Diagrams\",\"authors\":\"Isaac Rudich, Quentin Cappart, Louis-Martin Rousseau\",\"doi\":\"10.1613/jair.1.14607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision diagrams are an increasingly important tool in cutting-edge solvers for discrete optimization. However, the field of decision diagrams is relatively new, and is still incorporating the library of techniques that conventional solvers have had decades to build. We drew inspiration from the warm-start technique used in conventional solvers to address one of the major challenges faced by decision diagram based methods. Decision diagrams become more useful the wider they are allowed to be, but also become more costly to generate, especially with large numbers of variables. In the original version of this paper, we presented a method of peeling off a sub-graph of previously constructed diagrams and using it as the initial diagram for subsequent iterations that we call peel-and-bound. We tested the method on the sequence ordering problem, and our results indicate that our peel-and-bound scheme generates stronger bounds than a branch-and-bound scheme using the same propagators, and at significantly less computational cost. In this extended version of the paper, we also propose new methods for using relaxed decision diagrams to improve the solutions found using restricted decision diagrams, discuss the heuristic decisions involved with the parallelization of peel-and-bound, and discuss how peel-and-bound can be hyper-optimized for sequencing problems. Furthermore, we test the new methods on the sequence ordering problem and the traveling salesman problem with time-windows (TSPTW), and include an updated and generalized implementation of the algorithm capable of handling any discrete optimization problem. The new results show that peel-and-bound outperforms ddo (a decision diagram based branch-and-bound solver) on the TSPTW. We also close 15 open benchmark instances of the TSPTW.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":\"72 1\",\"pages\":\"1489-1538\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.14607\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.14607","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improved Peel-and-Bound: Methods for Generating Dual Bounds with Multivalued Decision Diagrams
Decision diagrams are an increasingly important tool in cutting-edge solvers for discrete optimization. However, the field of decision diagrams is relatively new, and is still incorporating the library of techniques that conventional solvers have had decades to build. We drew inspiration from the warm-start technique used in conventional solvers to address one of the major challenges faced by decision diagram based methods. Decision diagrams become more useful the wider they are allowed to be, but also become more costly to generate, especially with large numbers of variables. In the original version of this paper, we presented a method of peeling off a sub-graph of previously constructed diagrams and using it as the initial diagram for subsequent iterations that we call peel-and-bound. We tested the method on the sequence ordering problem, and our results indicate that our peel-and-bound scheme generates stronger bounds than a branch-and-bound scheme using the same propagators, and at significantly less computational cost. In this extended version of the paper, we also propose new methods for using relaxed decision diagrams to improve the solutions found using restricted decision diagrams, discuss the heuristic decisions involved with the parallelization of peel-and-bound, and discuss how peel-and-bound can be hyper-optimized for sequencing problems. Furthermore, we test the new methods on the sequence ordering problem and the traveling salesman problem with time-windows (TSPTW), and include an updated and generalized implementation of the algorithm capable of handling any discrete optimization problem. The new results show that peel-and-bound outperforms ddo (a decision diagram based branch-and-bound solver) on the TSPTW. We also close 15 open benchmark instances of the TSPTW.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.