G.H. Wang, C. Shi, L. Zhao, L. Mo, H. Diao, W. Wang
{"title":"采用射频溅射技术制备透明导电多晶Ti和H共掺杂In2O3薄膜","authors":"G.H. Wang, C. Shi, L. Zhao, L. Mo, H. Diao, W. Wang","doi":"10.1109/PVSC45281.2020.9300616","DOIUrl":null,"url":null,"abstract":"Ti and H co-doped In2O3 transparent conductive polycrystalline films (ITHO) were grown at a low substrate temperature of 150 °C by radio frequency magnetron sputtering for the applications of silicon-based heterojunction or other thin film solar cell. The effect of H2 flow rate on the structure, electrical and optical properties of the films was investigated. We will further improve film properties and employ it as electrode of heterojunction solar cell in the future.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"108 1","pages":"0712-0714"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transparent conductive polycrystalline Ti and H co-doped In2O3 films by RF sputtering technique\",\"authors\":\"G.H. Wang, C. Shi, L. Zhao, L. Mo, H. Diao, W. Wang\",\"doi\":\"10.1109/PVSC45281.2020.9300616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ti and H co-doped In2O3 transparent conductive polycrystalline films (ITHO) were grown at a low substrate temperature of 150 °C by radio frequency magnetron sputtering for the applications of silicon-based heterojunction or other thin film solar cell. The effect of H2 flow rate on the structure, electrical and optical properties of the films was investigated. We will further improve film properties and employ it as electrode of heterojunction solar cell in the future.\",\"PeriodicalId\":6773,\"journal\":{\"name\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"108 1\",\"pages\":\"0712-0714\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC45281.2020.9300616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transparent conductive polycrystalline Ti and H co-doped In2O3 films by RF sputtering technique
Ti and H co-doped In2O3 transparent conductive polycrystalline films (ITHO) were grown at a low substrate temperature of 150 °C by radio frequency magnetron sputtering for the applications of silicon-based heterojunction or other thin film solar cell. The effect of H2 flow rate on the structure, electrical and optical properties of the films was investigated. We will further improve film properties and employ it as electrode of heterojunction solar cell in the future.