{"title":"拉链分形函数与可变缩放","authors":".. Vi̇jay, A. Chand","doi":"10.31197/atnaa.1149689","DOIUrl":null,"url":null,"abstract":"Zipper fractal interpolation function (ZFIF) is a generalization of fractal interpolation function through an improved version of iterated function system by using a binary parameter called a signature. The signature allows the horizontal scalings to be negative. ZFIFs have a complex geometric structure, and they can be non-differentiable on a dense subset of an interval I. In this paper, we construct k-times continuously differentiable ZFIFs with variable scaling functions on I. Some properties like the positivity, monotonicity, and convexity of a zipper fractal function and the one-sided approximation for a continuous function by a zipper fractal function are studied. The existence of Schauder basis of zipper fractal functions for the space of k-times continuously differentiable functions and the space of p-integrable functions for p ∈ [1,∞) are studied. We introduce the zipper versions of full Müntz theorem for continuous function and p-integrable functions on I for p ∈ [1,∞).","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"392 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Zipper Fractal Functions with Variable Scalings\",\"authors\":\".. Vi̇jay, A. Chand\",\"doi\":\"10.31197/atnaa.1149689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zipper fractal interpolation function (ZFIF) is a generalization of fractal interpolation function through an improved version of iterated function system by using a binary parameter called a signature. The signature allows the horizontal scalings to be negative. ZFIFs have a complex geometric structure, and they can be non-differentiable on a dense subset of an interval I. In this paper, we construct k-times continuously differentiable ZFIFs with variable scaling functions on I. Some properties like the positivity, monotonicity, and convexity of a zipper fractal function and the one-sided approximation for a continuous function by a zipper fractal function are studied. The existence of Schauder basis of zipper fractal functions for the space of k-times continuously differentiable functions and the space of p-integrable functions for p ∈ [1,∞) are studied. We introduce the zipper versions of full Müntz theorem for continuous function and p-integrable functions on I for p ∈ [1,∞).\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"392 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.1149689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1149689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zipper fractal interpolation function (ZFIF) is a generalization of fractal interpolation function through an improved version of iterated function system by using a binary parameter called a signature. The signature allows the horizontal scalings to be negative. ZFIFs have a complex geometric structure, and they can be non-differentiable on a dense subset of an interval I. In this paper, we construct k-times continuously differentiable ZFIFs with variable scaling functions on I. Some properties like the positivity, monotonicity, and convexity of a zipper fractal function and the one-sided approximation for a continuous function by a zipper fractal function are studied. The existence of Schauder basis of zipper fractal functions for the space of k-times continuously differentiable functions and the space of p-integrable functions for p ∈ [1,∞) are studied. We introduce the zipper versions of full Müntz theorem for continuous function and p-integrable functions on I for p ∈ [1,∞).