农村电气化离网混合可再生能源系统技术经济可行性分析

J. Ahmed, K. Harijan, P. Shaikh, A. A. Lashari
{"title":"农村电气化离网混合可再生能源系统技术经济可行性分析","authors":"J. Ahmed, K. Harijan, P. Shaikh, A. A. Lashari","doi":"10.11648/J.JEEE.20210901.12","DOIUrl":null,"url":null,"abstract":"The demand for electricity in remote rural areas is a major obstacle to their development. The extension of the grid network to remote rural areas has been identified as a difficult topography for complex constructions and enormous investments. The development of off-grid renewable energy generation technologies offers the opportunity for tackling these challenges. This study provides a techno-economic feasibility analysis of an off-grid hybrid renewable energy system for a rural village of district Kech, Balochistan, Pakistan. The proposed hybrid system integrates the different combinations of the wind turbine, solar PV modules, and battery backups to meet the required electric load demand. The hybrid system is modeled and optimized through a powerful simulation software Hybrid Optimized Model for Electric Renewable (HOMER-Pro). The optimized configuration of the hybrid system consists of wind turbines (12kW), solar PV (103kW), 224 lead-acid batteries (72.4Ah each), and 29.1 kW converters. The simulation results show that the proposed system can meet the power requirements of 197.74kWh/day primary demand load with 27.87kW peak load. This system configuration has the Net Present Cost (NPC) of $127,345 and Cost of Energy (COE) of 0.137$/kWh with a 100% renewable fraction. Furthermore, the results of the present study are compared with the literature and have resulted in a cost-effective hybrid renewable energy system with a low COE.","PeriodicalId":37533,"journal":{"name":"International Journal of Electrical and Electronic Engineering and Telecommunications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Techno-economic Feasibility Analysis of an Off-grid Hybrid Renewable Energy System for Rural Electrification\",\"authors\":\"J. Ahmed, K. Harijan, P. Shaikh, A. A. Lashari\",\"doi\":\"10.11648/J.JEEE.20210901.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for electricity in remote rural areas is a major obstacle to their development. The extension of the grid network to remote rural areas has been identified as a difficult topography for complex constructions and enormous investments. The development of off-grid renewable energy generation technologies offers the opportunity for tackling these challenges. This study provides a techno-economic feasibility analysis of an off-grid hybrid renewable energy system for a rural village of district Kech, Balochistan, Pakistan. The proposed hybrid system integrates the different combinations of the wind turbine, solar PV modules, and battery backups to meet the required electric load demand. The hybrid system is modeled and optimized through a powerful simulation software Hybrid Optimized Model for Electric Renewable (HOMER-Pro). The optimized configuration of the hybrid system consists of wind turbines (12kW), solar PV (103kW), 224 lead-acid batteries (72.4Ah each), and 29.1 kW converters. The simulation results show that the proposed system can meet the power requirements of 197.74kWh/day primary demand load with 27.87kW peak load. This system configuration has the Net Present Cost (NPC) of $127,345 and Cost of Energy (COE) of 0.137$/kWh with a 100% renewable fraction. Furthermore, the results of the present study are compared with the literature and have resulted in a cost-effective hybrid renewable energy system with a low COE.\",\"PeriodicalId\":37533,\"journal\":{\"name\":\"International Journal of Electrical and Electronic Engineering and Telecommunications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Electronic Engineering and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.JEEE.20210901.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Electronic Engineering and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.JEEE.20210901.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 10

摘要

偏远农村地区的电力需求是其发展的主要障碍。将电网延伸到偏远农村地区已被确定为复杂建设和巨大投资的困难地形。离网可再生能源发电技术的发展为解决这些挑战提供了机会。本研究为巴基斯坦俾路支省Kech地区的一个村庄提供了离网混合可再生能源系统的技术经济可行性分析。拟议的混合系统集成了风力涡轮机、太阳能光伏模块和备用电池的不同组合,以满足所需的电力负荷需求。通过强大的仿真软件“可再生电力混合动力优化模型”(HOMER-Pro)对混合动力系统进行建模和优化。优化后的混合动力系统由风力涡轮机(12kW)、太阳能光伏(103kW)、224节铅酸电池(每节72.4Ah)和29.1 kW的转换器组成。仿真结果表明,该系统可满足一次需求负荷197.74kWh/d、峰值负荷27.87kW的电力需求。该系统配置的净当前成本(NPC)为127,345美元,能源成本(COE)为0.137美元/千瓦时,100%可再生部分。此外,本研究的结果与文献进行了比较,并得出了具有低COE的具有成本效益的混合可再生能源系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Techno-economic Feasibility Analysis of an Off-grid Hybrid Renewable Energy System for Rural Electrification
The demand for electricity in remote rural areas is a major obstacle to their development. The extension of the grid network to remote rural areas has been identified as a difficult topography for complex constructions and enormous investments. The development of off-grid renewable energy generation technologies offers the opportunity for tackling these challenges. This study provides a techno-economic feasibility analysis of an off-grid hybrid renewable energy system for a rural village of district Kech, Balochistan, Pakistan. The proposed hybrid system integrates the different combinations of the wind turbine, solar PV modules, and battery backups to meet the required electric load demand. The hybrid system is modeled and optimized through a powerful simulation software Hybrid Optimized Model for Electric Renewable (HOMER-Pro). The optimized configuration of the hybrid system consists of wind turbines (12kW), solar PV (103kW), 224 lead-acid batteries (72.4Ah each), and 29.1 kW converters. The simulation results show that the proposed system can meet the power requirements of 197.74kWh/day primary demand load with 27.87kW peak load. This system configuration has the Net Present Cost (NPC) of $127,345 and Cost of Energy (COE) of 0.137$/kWh with a 100% renewable fraction. Furthermore, the results of the present study are compared with the literature and have resulted in a cost-effective hybrid renewable energy system with a low COE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
22
期刊介绍: International Journal of Electrical and Electronic Engineering & Telecommunications. IJEETC is a scholarly peer-reviewed international scientific journal published quarterly, focusing on theories, systems, methods, algorithms and applications in electrical and electronic engineering & telecommunications. It provide a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Electrical and Electronic Engineering & Telecommunications. All papers will be blind reviewed and accepted papers will be published quarterly, which is available online (open access) and in printed version.
期刊最新文献
Implementation of Synchronous Bidirectional Converter Using a Fuzzy Logic Controller Performance Evaluation of a Modified ECG De-noising Technique Using Wavelet Decomposition and Threshold Method Modelling of Current Transport Mechanisms in GaSb-Rich Type-II Superlattice Infrared Photodiodes IOT Based Energy Meter with Billing System and Load Prioritization Dual Axis Solar Tracker with Weather Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1