热储能系统中热二极管双亲纳米表面聚结诱导的跳跃液滴研究

Y. Zhu, C. Tso, T. C. Ho, C. Chao
{"title":"热储能系统中热二极管双亲纳米表面聚结诱导的跳跃液滴研究","authors":"Y. Zhu, C. Tso, T. C. Ho, C. Chao","doi":"10.1115/es2020-1703","DOIUrl":null,"url":null,"abstract":"\n Thermal energy can be better harvested and stored by integrating thermal diodes with thermal energy storage systems. Among different types of thermal diodes, jumping-droplet thermal diodes exploiting superhydrophilic and superhydrophobic surfaces yield greater thermal rectification performance (i.e. diodicity) due to high latent heat. However, the condensation heat transfer and coalescing-jumping droplets are restricted by the ability of water to nucleate on the superhydrophobic surface, leading to a limited maximum jumping height, finally resulting in degradation of diodicity of the thermal diode. To solve this problem, we propose coating hydrophilic bumps on the superhydrophobic surface which can provide preferable nucleation sites, forming a new type of nanostructured surface, called biphilic surface. This work aims to investigate coalescence-induced jumping droplets on biphilic surfaces to enhance diodicity of phase change thermal diodes. Our experimental results show that the jumping height and jumping volumetric flux of the coalescence-induced jumping droplets on a biphilic surface are enhanced by 42% and 254% compared to those on a superhydrophobic surface, respectively. Based on the jumping droplet results, a mathematical model for diodicity is built. 244% improvement can be achieved in the thermal diode with an optimized biphilic surface as compared to that with a superhydrophobic surface, which provides an effective strategy to improve the diodicity of a phase change thermal diode and an alternative approach to enhance the energy harvesting and storage capability in thermal energy storage systems.","PeriodicalId":8602,"journal":{"name":"ASME 2020 14th International Conference on Energy Sustainability","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study of Coalescence-Induced Jumping Droplets on Biphilic Nanostructured Surfaces for Thermal Diodes in Thermal Energy Storage Systems\",\"authors\":\"Y. Zhu, C. Tso, T. C. Ho, C. Chao\",\"doi\":\"10.1115/es2020-1703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Thermal energy can be better harvested and stored by integrating thermal diodes with thermal energy storage systems. Among different types of thermal diodes, jumping-droplet thermal diodes exploiting superhydrophilic and superhydrophobic surfaces yield greater thermal rectification performance (i.e. diodicity) due to high latent heat. However, the condensation heat transfer and coalescing-jumping droplets are restricted by the ability of water to nucleate on the superhydrophobic surface, leading to a limited maximum jumping height, finally resulting in degradation of diodicity of the thermal diode. To solve this problem, we propose coating hydrophilic bumps on the superhydrophobic surface which can provide preferable nucleation sites, forming a new type of nanostructured surface, called biphilic surface. This work aims to investigate coalescence-induced jumping droplets on biphilic surfaces to enhance diodicity of phase change thermal diodes. Our experimental results show that the jumping height and jumping volumetric flux of the coalescence-induced jumping droplets on a biphilic surface are enhanced by 42% and 254% compared to those on a superhydrophobic surface, respectively. Based on the jumping droplet results, a mathematical model for diodicity is built. 244% improvement can be achieved in the thermal diode with an optimized biphilic surface as compared to that with a superhydrophobic surface, which provides an effective strategy to improve the diodicity of a phase change thermal diode and an alternative approach to enhance the energy harvesting and storage capability in thermal energy storage systems.\",\"PeriodicalId\":8602,\"journal\":{\"name\":\"ASME 2020 14th International Conference on Energy Sustainability\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 14th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/es2020-1703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 14th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2020-1703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过将热二极管与热能储存系统集成,可以更好地收集和储存热能。在不同类型的热二极管中,利用超亲水性和超疏水性表面的跳液滴热二极管由于其高潜热而具有更好的热整流性能(即二极管性)。然而,水在超疏水表面成核的能力限制了冷凝传热和聚结跳跃液滴,导致最大跳跃高度有限,最终导致热二极管的二度性下降。为了解决这一问题,我们提出在超疏水表面涂覆亲水凸起,形成一种新型的纳米结构表面,称为双亲表面。本工作旨在研究在双亲表面上聚结诱导的跳跃液滴,以提高相变热二极管的二极管性。实验结果表明,与超疏水表面相比,双亲表面上聚结诱导的跳跃液滴的跳跃高度和跳跃体积通量分别提高了42%和254%。基于跳跃液滴的实验结果,建立了二态性的数学模型。与超疏水表面相比,优化后的双亲表面可使热二极管的性能提高244%,为提高相变热二极管的二度性提供了一种有效的策略,也为提高热储能系统的能量收集和存储能力提供了一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of Coalescence-Induced Jumping Droplets on Biphilic Nanostructured Surfaces for Thermal Diodes in Thermal Energy Storage Systems
Thermal energy can be better harvested and stored by integrating thermal diodes with thermal energy storage systems. Among different types of thermal diodes, jumping-droplet thermal diodes exploiting superhydrophilic and superhydrophobic surfaces yield greater thermal rectification performance (i.e. diodicity) due to high latent heat. However, the condensation heat transfer and coalescing-jumping droplets are restricted by the ability of water to nucleate on the superhydrophobic surface, leading to a limited maximum jumping height, finally resulting in degradation of diodicity of the thermal diode. To solve this problem, we propose coating hydrophilic bumps on the superhydrophobic surface which can provide preferable nucleation sites, forming a new type of nanostructured surface, called biphilic surface. This work aims to investigate coalescence-induced jumping droplets on biphilic surfaces to enhance diodicity of phase change thermal diodes. Our experimental results show that the jumping height and jumping volumetric flux of the coalescence-induced jumping droplets on a biphilic surface are enhanced by 42% and 254% compared to those on a superhydrophobic surface, respectively. Based on the jumping droplet results, a mathematical model for diodicity is built. 244% improvement can be achieved in the thermal diode with an optimized biphilic surface as compared to that with a superhydrophobic surface, which provides an effective strategy to improve the diodicity of a phase change thermal diode and an alternative approach to enhance the energy harvesting and storage capability in thermal energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Case Study of the Puna Geothermal Power Plant and Proposed Retrofit H2S Gas Mitigation Strategies Evaluating the Effective Solar Absorptance of Dilute Particle Configurations Use of Silica Coated Zinc Nanoparticles for Enhancement in Thermal Properties of Carbonate Eutectic Salt for Concentrated Solar Power Plants High-Temperature Thermophysical Property Measurement of Proposed Gen3 CSP Containment Materials Update on NREL Outdoor Exposure Campaign of Solar Mirrors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1