{"title":"量子比特码:有偏误差算子的奇偶校验电路","authors":"Dawei Jiao, Y. Li","doi":"10.26421/qic22.5-6-3","DOIUrl":null,"url":null,"abstract":"In the shallow sub-threshold regime, fault-tolerant quantum computation requires a tremendous amount of qubits. In this paper, we study the error correction in the deep sub-threshold regime. We estimate the physical error rate for achieving the logical error rates of $10^{-6} - 10^{-15}$ using few-qubit codes, i.e.~short repetition codes, small surface codes and the Steane code. Error correction circuits that are efficient for biased error operators are identified. Using the Steane code, when error operators are biased with a ratio of $10^{-3}$, the logical error rate of $10^{-15}$ can be achieved with the physical error rate of $10^{-5}$, which is much higher than the physical error rate of $10^{-9}$ for depolarising errors.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"18 1","pages":"408-426"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qubit Codes: Parity-check Circuits for Biased Error Operators\",\"authors\":\"Dawei Jiao, Y. Li\",\"doi\":\"10.26421/qic22.5-6-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the shallow sub-threshold regime, fault-tolerant quantum computation requires a tremendous amount of qubits. In this paper, we study the error correction in the deep sub-threshold regime. We estimate the physical error rate for achieving the logical error rates of $10^{-6} - 10^{-15}$ using few-qubit codes, i.e.~short repetition codes, small surface codes and the Steane code. Error correction circuits that are efficient for biased error operators are identified. Using the Steane code, when error operators are biased with a ratio of $10^{-3}$, the logical error rate of $10^{-15}$ can be achieved with the physical error rate of $10^{-5}$, which is much higher than the physical error rate of $10^{-9}$ for depolarising errors.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"18 1\",\"pages\":\"408-426\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/qic22.5-6-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.5-6-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Qubit Codes: Parity-check Circuits for Biased Error Operators
In the shallow sub-threshold regime, fault-tolerant quantum computation requires a tremendous amount of qubits. In this paper, we study the error correction in the deep sub-threshold regime. We estimate the physical error rate for achieving the logical error rates of $10^{-6} - 10^{-15}$ using few-qubit codes, i.e.~short repetition codes, small surface codes and the Steane code. Error correction circuits that are efficient for biased error operators are identified. Using the Steane code, when error operators are biased with a ratio of $10^{-3}$, the logical error rate of $10^{-15}$ can be achieved with the physical error rate of $10^{-5}$, which is much higher than the physical error rate of $10^{-9}$ for depolarising errors.