量子比特码:有偏误差算子的奇偶校验电路

Dawei Jiao, Y. Li
{"title":"量子比特码:有偏误差算子的奇偶校验电路","authors":"Dawei Jiao, Y. Li","doi":"10.26421/qic22.5-6-3","DOIUrl":null,"url":null,"abstract":"In the shallow sub-threshold regime, fault-tolerant quantum computation requires a tremendous amount of qubits. In this paper, we study the error correction in the deep sub-threshold regime. We estimate the physical error rate for achieving the logical error rates of $10^{-6} - 10^{-15}$ using few-qubit codes, i.e.~short repetition codes, small surface codes and the Steane code. Error correction circuits that are efficient for biased error operators are identified. Using the Steane code, when error operators are biased with a ratio of $10^{-3}$, the logical error rate of $10^{-15}$ can be achieved with the physical error rate of $10^{-5}$, which is much higher than the physical error rate of $10^{-9}$ for depolarising errors.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"18 1","pages":"408-426"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qubit Codes: Parity-check Circuits for Biased Error Operators\",\"authors\":\"Dawei Jiao, Y. Li\",\"doi\":\"10.26421/qic22.5-6-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the shallow sub-threshold regime, fault-tolerant quantum computation requires a tremendous amount of qubits. In this paper, we study the error correction in the deep sub-threshold regime. We estimate the physical error rate for achieving the logical error rates of $10^{-6} - 10^{-15}$ using few-qubit codes, i.e.~short repetition codes, small surface codes and the Steane code. Error correction circuits that are efficient for biased error operators are identified. Using the Steane code, when error operators are biased with a ratio of $10^{-3}$, the logical error rate of $10^{-15}$ can be achieved with the physical error rate of $10^{-5}$, which is much higher than the physical error rate of $10^{-9}$ for depolarising errors.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"18 1\",\"pages\":\"408-426\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/qic22.5-6-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.5-6-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在浅次阈值状态下,容错量子计算需要大量的量子比特。在本文中,我们研究了深度亚阈值区域的误差校正。我们估计了实现$10^{-6}- 10^{-15}$逻辑错误率的物理错误率,使用少量量子比特码,即~短重复码,小表面码和Steane码。确定了对有偏误差算子有效的纠错电路。使用Steane码,当误差算子的偏置率为$10^{-3}$时,物理错误率为$10^{-5}$,逻辑错误率为$10^{-15}$,远高于去极化误差的物理错误率$10^{-9}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Qubit Codes: Parity-check Circuits for Biased Error Operators
In the shallow sub-threshold regime, fault-tolerant quantum computation requires a tremendous amount of qubits. In this paper, we study the error correction in the deep sub-threshold regime. We estimate the physical error rate for achieving the logical error rates of $10^{-6} - 10^{-15}$ using few-qubit codes, i.e.~short repetition codes, small surface codes and the Steane code. Error correction circuits that are efficient for biased error operators are identified. Using the Steane code, when error operators are biased with a ratio of $10^{-3}$, the logical error rate of $10^{-15}$ can be achieved with the physical error rate of $10^{-5}$, which is much higher than the physical error rate of $10^{-9}$ for depolarising errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quantization of interacting particle systems Guidelines to use the ICSM for developing quantum-classical systems A Comparative Analysis of Quantum-based Approaches for Scalable and Efficient Data mining in Cloud Environments On the quantum complexity of integration of a function with unknown singularity Site recurrence for continuous-time open quantum walks on the line
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1