线程运动:多核系统的细粒度电源管理

K. Rangan, Gu-Yeon Wei, D. Brooks
{"title":"线程运动:多核系统的细粒度电源管理","authors":"K. Rangan, Gu-Yeon Wei, D. Brooks","doi":"10.1145/1555754.1555793","DOIUrl":null,"url":null,"abstract":"Dynamic voltage and frequency scaling (DVFS) is a commonly-used power-management scheme that dynamically adjusts power and performance to the time-varying needs of running programs. Unfortunately, conventional DVFS, relying on off-chip regulators, faces limitations in terms of temporal granularity and high costs when considered for future multi-core systems. To overcome these challenges, this paper presents thread motion (TM), a fine-grained power-management scheme for chip multiprocessors (CMPs). Instead of incurring the high cost of changing the voltage and frequency of different cores, TM enables rapid movement of threads to adapt the time-varying computing needs of running applications to a mixture of cores with fixed but different power/performance levels. Results show that for the same power budget, two voltage/frequency levels are sufficient to provide performance gains commensurate to idealized scenarios using per-core voltage control. Thread motion extends workload-based power management into the nanosecond realm and, for a given power budget, provides up to 20% better performance than coarse-grained DVFS.","PeriodicalId":91388,"journal":{"name":"Proceedings. International Symposium on Computer Architecture","volume":"46 1","pages":"302-313"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"266","resultStr":"{\"title\":\"Thread motion: fine-grained power management for multi-core systems\",\"authors\":\"K. Rangan, Gu-Yeon Wei, D. Brooks\",\"doi\":\"10.1145/1555754.1555793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic voltage and frequency scaling (DVFS) is a commonly-used power-management scheme that dynamically adjusts power and performance to the time-varying needs of running programs. Unfortunately, conventional DVFS, relying on off-chip regulators, faces limitations in terms of temporal granularity and high costs when considered for future multi-core systems. To overcome these challenges, this paper presents thread motion (TM), a fine-grained power-management scheme for chip multiprocessors (CMPs). Instead of incurring the high cost of changing the voltage and frequency of different cores, TM enables rapid movement of threads to adapt the time-varying computing needs of running applications to a mixture of cores with fixed but different power/performance levels. Results show that for the same power budget, two voltage/frequency levels are sufficient to provide performance gains commensurate to idealized scenarios using per-core voltage control. Thread motion extends workload-based power management into the nanosecond realm and, for a given power budget, provides up to 20% better performance than coarse-grained DVFS.\",\"PeriodicalId\":91388,\"journal\":{\"name\":\"Proceedings. International Symposium on Computer Architecture\",\"volume\":\"46 1\",\"pages\":\"302-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"266\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1555754.1555793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1555754.1555793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 266

摘要

动态电压和频率缩放(DVFS)是一种常用的电源管理方案,它根据运行程序的时变需求动态调整功率和性能。不幸的是,当考虑到未来的多核系统时,传统的DVFS依赖于片外调节器,在时间粒度和高成本方面面临限制。为了克服这些挑战,本文提出了线程运动(TM),一种用于芯片多处理器(cmp)的细粒度电源管理方案。TM不会因改变不同内核的电压和频率而产生高昂的成本,而是支持线程的快速移动,以适应运行应用程序的时变计算需求,以适应具有固定但不同功率/性能水平的内核的混合。结果表明,对于相同的功率预算,两个电压/频率水平足以提供与使用每个核心电压控制的理想情况相称的性能增益。线程运动将基于工作负载的电源管理扩展到纳秒级,并且在给定的电源预算下,提供比粗粒度DVFS高出20%的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thread motion: fine-grained power management for multi-core systems
Dynamic voltage and frequency scaling (DVFS) is a commonly-used power-management scheme that dynamically adjusts power and performance to the time-varying needs of running programs. Unfortunately, conventional DVFS, relying on off-chip regulators, faces limitations in terms of temporal granularity and high costs when considered for future multi-core systems. To overcome these challenges, this paper presents thread motion (TM), a fine-grained power-management scheme for chip multiprocessors (CMPs). Instead of incurring the high cost of changing the voltage and frequency of different cores, TM enables rapid movement of threads to adapt the time-varying computing needs of running applications to a mixture of cores with fixed but different power/performance levels. Results show that for the same power budget, two voltage/frequency levels are sufficient to provide performance gains commensurate to idealized scenarios using per-core voltage control. Thread motion extends workload-based power management into the nanosecond realm and, for a given power budget, provides up to 20% better performance than coarse-grained DVFS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ISCA '22: The 49th Annual International Symposium on Computer Architecture, New York, New York, USA, June 18 - 22, 2022 Special-purpose and future architectures Computer memory systems Basics of the central processing unit FRONT MATTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1