缓解痉挛评估传感器中的伪影

Cagri Yalcin, M. Sam, Yifeng Bu, Moran Amit, A. Skalsky, Michael C. Yip, T. Ng, H. Garudadri
{"title":"缓解痉挛评估传感器中的伪影","authors":"Cagri Yalcin, M. Sam, Yifeng Bu, Moran Amit, A. Skalsky, Michael C. Yip, T. Ng, H. Garudadri","doi":"10.1002/aisy.202000106","DOIUrl":null,"url":null,"abstract":"Spasticity is a pathological condition that can occur in people with neuromuscular disorders. Objective, repeatable metrics are needed for evaluation to provide appropriate treatment and to monitor patient condition. Herein, an instrumented bimodal glove with force and movement sensors for spasticity assessment is presented. To mitigate noise artifacts, machine learning techniques are used, specifically a multitask neural network, to calibrate the instrumented glove signals against the ground truth from sensors integrated in a robotic arm. The motorized robotic arm system offers adjustable resistance to simulate different levels of muscle stiffness in spasticity, and the sensors on the robot provide ground‐truth measurements of angular displacement and force applied during flexion and extension maneuvers. The robotic sensor measurements are used to train the instrumented glove data through multitask learning. After processing through the neural network, the Pearson correlation coefficients between the processed signals and the ground truth are above 0.92, demonstrating successful signal calibration and noise mitigation.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"695 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Artifacts Mitigation in Sensors for Spasticity Assessment\",\"authors\":\"Cagri Yalcin, M. Sam, Yifeng Bu, Moran Amit, A. Skalsky, Michael C. Yip, T. Ng, H. Garudadri\",\"doi\":\"10.1002/aisy.202000106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spasticity is a pathological condition that can occur in people with neuromuscular disorders. Objective, repeatable metrics are needed for evaluation to provide appropriate treatment and to monitor patient condition. Herein, an instrumented bimodal glove with force and movement sensors for spasticity assessment is presented. To mitigate noise artifacts, machine learning techniques are used, specifically a multitask neural network, to calibrate the instrumented glove signals against the ground truth from sensors integrated in a robotic arm. The motorized robotic arm system offers adjustable resistance to simulate different levels of muscle stiffness in spasticity, and the sensors on the robot provide ground‐truth measurements of angular displacement and force applied during flexion and extension maneuvers. The robotic sensor measurements are used to train the instrumented glove data through multitask learning. After processing through the neural network, the Pearson correlation coefficients between the processed signals and the ground truth are above 0.92, demonstrating successful signal calibration and noise mitigation.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"695 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202000106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

痉挛是神经肌肉疾病患者可能出现的一种病理状态。目的:需要可重复的指标进行评估,以提供适当的治疗和监测患者的病情。本文提出了一种带有力和运动传感器的仪器双峰手套,用于痉挛评估。为了减轻噪声伪像,使用了机器学习技术,特别是多任务神经网络,根据集成在机械臂中的传感器的地面真实情况校准仪表手套信号。电动机械臂系统提供可调节的阻力,以模拟痉挛时不同程度的肌肉僵硬,机器人上的传感器提供在屈伸动作期间施加的角位移和力的地面真实测量。机器人传感器测量值通过多任务学习训练手套数据。经过神经网络处理后,处理后的信号与地面真值之间的Pearson相关系数均在0.92以上,表明信号标定成功,降噪成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artifacts Mitigation in Sensors for Spasticity Assessment
Spasticity is a pathological condition that can occur in people with neuromuscular disorders. Objective, repeatable metrics are needed for evaluation to provide appropriate treatment and to monitor patient condition. Herein, an instrumented bimodal glove with force and movement sensors for spasticity assessment is presented. To mitigate noise artifacts, machine learning techniques are used, specifically a multitask neural network, to calibrate the instrumented glove signals against the ground truth from sensors integrated in a robotic arm. The motorized robotic arm system offers adjustable resistance to simulate different levels of muscle stiffness in spasticity, and the sensors on the robot provide ground‐truth measurements of angular displacement and force applied during flexion and extension maneuvers. The robotic sensor measurements are used to train the instrumented glove data through multitask learning. After processing through the neural network, the Pearson correlation coefficients between the processed signals and the ground truth are above 0.92, demonstrating successful signal calibration and noise mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1